Skip to main content
Log in

Effects of fermented barley on lipid and carnitine profiles in C57BL/6J mice

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of the present study was to investigate the effects of fermented barley supplementation on blood lipid profiles, carnitine concentrations, and hepatic mRNA levels of enzymes involved in fatty acid metabolism. Thirty-two C57BL/6J male mice were divided into 4 groups; normal diet control group (ND), high fat diet control group (HD), high fat diet plus barley supplemented group (BR), and high fat diet plus fermented barley supplemented group (BR-F). BR-F supplementations decreased total cholesterol (TC) and LDL-cholesterol in serum, triglyceride (TG) in liver. Serum total carnitine (TCNE) concentrations were significantly higher in the BR-F group than HD group. BR-F supplementations significantly increased hepatic lipolysis regulating gene expression such as carnitine palmitoyltransferase-I (CPT-I), peroxisome proliferator-activated receptor-α (PPARα), whereas significantly decreased lipogenic enzyme expression such as acetyl CoA carboxylase (ACC). These results suggest that the fermented barley has anti-obesity properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Brown A, Siahpush M. Risk factors for overweight and obesity: Results from the 2001 National Health Survey. J. Public. Health 121: 603–613 (2007)

    Article  CAS  Google Scholar 

  2. Brisbon N, Plumb J, Brawer R, Paxman D. The asthma and obesity epidemics: The role played by the built environment — a public health perspective. J. Allergy Clin. Immun. 115: 1024–1028 (2005)

    Article  Google Scholar 

  3. Jee SH, Kim HJ. Obesity, insulin resistance, and cancer risk. Yonsei Med. J. 46: 449–455 (2005)

    Article  CAS  Google Scholar 

  4. Kopelman PG. Obesity as a medical problem. Nature 404 (6778): 635–643 (2000)

    CAS  Google Scholar 

  5. Newman CW, Newman RK. A brief history of barley foods. Cereal Foods World. 51: 4–7 (2006)

    Google Scholar 

  6. Madhujith T, Izydorczyk MS, Shahidi F. Antioxidant properties of pearled barley fractions. J. Agr. Food. Chem. 54: 3283–3289 (2006)

    Article  CAS  Google Scholar 

  7. Slavin J, Marquart L, Jacobs D. Consumption of whole-grain foods and decreased risk of cancer: Proposed mechanisms. Cereal Foods World. 45: 54–58 (2000)

    Google Scholar 

  8. Martinez VM, Newman RK, Newman CW. Barley diets with different fat sources have hypocholesterolemic effects in chicks. J. Nutr. 122: 1070–1076 (1992)

    CAS  Google Scholar 

  9. Kim SY, Song HJ, Lee YY, Cho KH, Roh YK. Biomedical issues of dietary fiber β-glucan. J. Korean Med. Sci. 21: 781–789 (2006)

    Article  CAS  Google Scholar 

  10. Wood BPJ, Braaten JT, Scott FW. Effect of dose and modification of viscous properties of oat gum on plasma glucose and insulin following an oral glucose load. Brit. J. Nutr. 72: 731–743 (1994)

    Article  CAS  Google Scholar 

  11. Davidson MH, Dugan LD, Burns JH, Bova J, Story K, Drennan KB. The hypocholesterolemic effects of β-glucan in oatmeal and oat bran. A dose controlled study. J. Am. Med. Assoc. 265: 1833–1839 (1991)

    Article  CAS  Google Scholar 

  12. Behall KM, Scholfield DJ, Hallfrisch J. Lipids significantly reduced by diets containing barley in moderately hypercholesterolemic men. J. Am. Coll. Nutr. 23: 55–62 (2004)

    CAS  Google Scholar 

  13. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 18: 499–502 (1972)

    CAS  Google Scholar 

  14. Cederblad G, Lindstedt S. A method for the determination of carnitine in the picomole range. Clin. Chim. Acta 37: 235–243 (1972)

    Article  CAS  Google Scholar 

  15. Sachan DS, Rhew TH, Ruark RA. Ameliorating effects of carnitine and its precursors on alcohol-induced fatty liver. J. Clin. Nutr. 39: 738–744 (1984)

    CAS  Google Scholar 

  16. Lissner L, Lindroos AK, Sjostrom L. Swedish obese subjects (SOS): An obesity intervention study with a nutritional perspective. Eur. J. Clin. Nutr. 52: 316–322 (1998)

    Article  CAS  Google Scholar 

  17. Kimm SY. The role of dietary fiber in the development and treatment of childhood obesity. Pediatrics 96: 1010–1014 (1995)

    CAS  Google Scholar 

  18. Birketvedt GS, Aaseth J, Florholmen JR, Ryttig K. Long-term effect of fiber supplement and reduced energy intake on body weight and blood lipids in overweight subjects. Acta Med. 43: 129–132 (2000)

    CAS  Google Scholar 

  19. Hays NP, Starling RD, Liu X, Sullivan DH, Trappe TA, Fluckey JD, Evans WJ. Effects of an ad libitum low-fat, high-carbohydrate diet on body weight, body composition, and fat distribution in older men and women: A randomized controlled trial. Arch. Intern. Med. 164: 210–217 (2004)

    Article  Google Scholar 

  20. Cave NA, Wood PJ, Burrows VD. Estimation of an acceptable β-glucan level for broiler chick diets. Can. J. Anim. Sci. 72: 691–694 (1992)

    Article  CAS  Google Scholar 

  21. Jo J, Gavrilova O, Pack S, Jou W, Mullen S, Sumner AE, Cushman SW, Periwal V. Hypertrophy and/or hyperplasia: Dynamics of adipose tissue growth. PLoS Comput Biol. 5(3): e1000324 (2009)

    Article  Google Scholar 

  22. Petit V, Arnould L, Martin P, Monnot MC, Pineau T, Besnard P, Niot I. Chronic high-fat diet affects intestinal fat absorption and postprandial triglyceride levels in the mouse. J. Lipid Res. 48: 278–287 (2007)

    Article  CAS  Google Scholar 

  23. Braaten JT, Wood PJ, Scott FW, Wolynetz MS, Lowe MK, Bradley-White P, Collins MW. Oat β-glucan reduces blood cholesterol concentration in hypercholesterolemic subjects. Eur. J. Clin. Nutr. 48: 465–474 (1994)

    CAS  Google Scholar 

  24. Li J, Wang J, Kaneko T, Qin LQ, Sato A. Effect of fiber intake on the blood pressure, lipids, and heart rate in Goto Kakizaki rats. Nutrition 20: 1003–1007 (2004)

    Article  CAS  Google Scholar 

  25. Lovegrove JA, Clohessy A, Milon H, Williams CM. Modest doses of β-glucan do not reduce concentrations of potentially atherogenic lipoproteins. Am. J. Clin. Nutr. 72: 49–55 (2000)

    CAS  Google Scholar 

  26. McGarry JD, Brown NF. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur. J. Biochem. 244: 1–14 (1997)

    Article  CAS  Google Scholar 

  27. Ramsay RR, Gandou RD, van der Leij FR. Molecular enzymology of carnitine transfer and transport. Biochim. Biophys. Acta 1546: 21–43 (2001)

    Article  CAS  Google Scholar 

  28. Jakobs BS, Wanders RJ. Fatty acid β-oxidation in peroxisomes and mitochondria: The ®rst, unequivocal evidence for the involvement of carnitine in shuttling propionyl-CoA from peroxisomes to mitochondria. Biochem. Bioph. Res. Co. 213: 1035–1041 (1995)

    Article  CAS  Google Scholar 

  29. Verhoeven NM, Roe DS, Kok RM, Wanders RJ, Jakobs C, Roe CR. Phytanic acid and pristanic acid are oxidized by sequential peroxisomal and mitochondrial reactions in cultured ®broblasts. J. Lipid. Res. 39: 66–74 (1998)

    CAS  Google Scholar 

  30. Memon RA, Fulle J, Moser AH, Smith PJ, Grunfeld C, Feingold KR. Regulation of putative fatty acid transporters and acyl-CoA synthetase in liver and adipose tissue in ob/ob mice. Diabetes 48: 121–127 (1999)

    Article  CAS  Google Scholar 

  31. McGarry JD, Leatherman GF, Foster DW. Carnitine palmitoyltransferase I. The site of inhibition of hepatic fatty acid oxidation by malonyl-CoA. J. Biol. Chem. 253: 4128–4136 (1978)

    CAS  Google Scholar 

  32. Bonnefont JP, Demaugre F, Prip-Buus C, Saudubray JM, Brivet M, Abadi N, Thuillier L. Carnitine palmitoyltransferase deficiencies. Mol. Genet. Metab. 68: 424–440 (1999)

    Article  CAS  Google Scholar 

  33. Achouri Y, Hegarty BD, Allanic D, Becard D, Hainault I, Ferre P, Foufelle F. Long chain fatty acyl-CoA synthetase expression is induced by insulin and glucose: Involvement of sterol regulatory element-binding protein-1c. Biochimie 87: 1149–1155 (2005)

    Article  CAS  Google Scholar 

  34. Cha YS, Soh JR, Kin JW. Acanthopanax senticosus extract from cultured cells improves lipid parameters in rats fed with a high fat diet. Nutraceut. Food 8: 40–45 (2003)

    Article  CAS  Google Scholar 

  35. Patsouris D, Reddy JK, Muller M, Kersten S. Peroxizome proliferator-activated receptor alpha mediates the effects of high-fat diet on hepatic gene expression. Endocrinology 147: 1508–1516 (2007)

    Article  Google Scholar 

  36. Crespillo A, Alonso M, Vida M, Pavón FJ, Serrano A, Rivera P, Romero-Zerbo Y, Fernández-Llebrez P, Martínez A, Pérez-Valero V, Bermúdez-Silva FJ, Suárez J, de Fonseca FR. Reduction of body weight, liver steatosis, and SCD1 expression by pharmacologic administration of the isoflavone daidzein in diet-induced obesity. Brit. J. Pharmacol. 10: 1476-5381331–337

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youn-Soo Cha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, JH., Kim, TH., Ko, MS. et al. Effects of fermented barley on lipid and carnitine profiles in C57BL/6J mice. Food Sci Biotechnol 21, 323–329 (2012). https://doi.org/10.1007/s10068-012-0043-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-012-0043-z

Keywords

Navigation