Skip to main content
Log in

In vitro and in vivo anti-tumor effects of oriental herbal mixtures

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

To identify antitumor materials, oriental herb extracts were investigated in the present study. The effects of individual oriental herb extracts (OHE) and a mixture of these extracts (MOHE) for antioxidant, free radical scavenging, and tumoricidal activities were determined. The OHEs and MOHE exhibited relatively high free radical scavenging and antioxidant activities, in a concentration dependent manner. The total phenolic contents of the extracts suggest that these compounds may have played a role, at least in part, in the free radical scavenging and antioxidant effects. Since the MOHE showed the highest toxicity against tumor cell lines, the MOHE was administrated in cancer mice models. Consistent with the in vitro studies, the MOHE resulted in prolonged life spans in cancer mice possibly by combination of its anticancer and antioxidant activities. Our data indicate the possibilities of using the MOHE to counteract carcinogenesis as well as other forms of electrophilic toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dreosti IE. Nutrition, cancer, and aging. Ann. NY Acad. Sci. 854: 371–377 (1998)

    Article  CAS  Google Scholar 

  2. Doll R. The lessons of life: Keynote address to the nutrition and cancer conference. Cancer Res. 52: 2024s–2029s (1992)

    CAS  Google Scholar 

  3. Olanow CW, Tatton WG. Etiology and pathogenesis of Parkinson’s disease. Annu. Rev. Neurosci. 22: 123–144 (1999)

    Article  CAS  Google Scholar 

  4. Hussain SP, Hofseth LJ, Harris CC. Radical causes of cancer. Nat. Rev. Cancer 3: 276–285 (2003)

    Article  CAS  Google Scholar 

  5. Dormandy TL. An approach to free radicals. Lancet 2: 1010–1014 (1983)

    Article  CAS  Google Scholar 

  6. Ames BN, Shigenaga MK, Hagen TM. Oxidants, antioxidants, and the degenerative diseases of aging. P. Natl. Acad. Sci. USA 90: 7915–7922 (1993)

    Article  CAS  Google Scholar 

  7. Armitage P, Doll R. The age distribution of cancer and a multi-stage theory of carcinogenesis. Brit. J. Cancer 8: 1–12 (1954)

    CAS  Google Scholar 

  8. Kim YI, Mason JB. Nutrition chemoprevention of gastrointestinal cancers: A critical review. Nutr. Rev. 54: 259–279 (1996)

    Article  CAS  Google Scholar 

  9. Saha K, Lajis NH, Israf DA, Hamzah AS, Khozirah S, Khamis S, Syahida A. Evaluation of antioxidant and nitric oxide inhibitory activities of selected Malaysian medicinal plants. J. Ethnopharmacol. 92: 263–267 (2004)

    Article  CAS  Google Scholar 

  10. Martin JP Jr, Dailey M, Sugarman E. Negative and positive assays of superoxide dismutase based on hematoxylin autoxidation. Arch. Biochem. Biophys. 255: 329–336 (1987)

    Article  CAS  Google Scholar 

  11. Nakatani N, Inatani R, Ohta H, Nishioka A. Chemical constituents of peppers (Piper spp.) and application to food preservation: Naturally occurring antioxidative compounds. Environ. Health Persp. 67: 135–142 (1986)

    Article  CAS  Google Scholar 

  12. Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT, Weinberg RA. Tumor spectrum analysis in p53-mutant mice. Curr. Biol. 4: 1–7 (1994)

    Article  CAS  Google Scholar 

  13. Okawa Y, Murata Y, Kobayashi M, Suzuki M, Suzuki S. Augmentation of host resistance to Candida albicans infection in ascites tumor-bearing mice. Microbiol. Immunol. 36: 517–521 (1992)

    CAS  Google Scholar 

  14. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95: 351–358 (1979)

    Article  CAS  Google Scholar 

  15. Koop DR, Morgan ET, Tarr GE, Coon MJ. Purification and characterization of a unique isozyme of cytochrome P-450 from liver microsomes of ethanol-treated rabbits. J. Biol. Chem. 257: 8472–8480 (1982)

    CAS  Google Scholar 

  16. Ellman GL. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82: 70–77 (1959)

    Article  CAS  Google Scholar 

  17. Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 70: 158–169 (1967)

    CAS  Google Scholar 

  18. Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249: 7130–7139 (1974)

    CAS  Google Scholar 

  19. Fogliano V, Verde V, Randazzo G, Ritieni A. Method for measuring antioxidant activity and its application to monitoring the antioxidant capacity of wines. J. Agr. Food Chem. 47: 1035–1040 (1999)

    Article  CAS  Google Scholar 

  20. Kahkonen MP, Hopia AI, Vuorela HJ, Rauha JP, Pihlaja K, Kujala TS, Heinonen M. Antioxidant activity of plant extracts containing phenolic compounds. J. Agr. Food Chem. 47: 3954–3962 (1999)

    Article  CAS  Google Scholar 

  21. An JJ, Lee YP, Kim DW, Sohn EJ, Jeong HJ, Kang HW, Shin MJ, Kim MJ, Ahn EH, Jang SH, Kang JH, Kang TC, Won MH, Kwon OS, Cho SW, Lee KS, Park J, Eum WS, Choi SY. Transduced HSP27 protein protects neuronal cell death by enhancing FALSassociated SOD1 mutant activity. BMB Rep. 42: 136–141 (2009)

    CAS  Google Scholar 

  22. Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 65: 55–63 (1983)

    Article  CAS  Google Scholar 

  23. Butelli E, Titta L, Giorgio M, Mock HP, Matros A, Peterek S, Schijlen EG, Hall RD, Bovy AG, Luo J, Martin C. Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat. Biotechnol. 26: 1301–1308 (2008)

    Article  CAS  Google Scholar 

  24. Ambs S, Merriam WG, Ogunfusika MO, Bennett WP, Ishibe N, Hussain SP, Tzeng EE, Geller DA, Billiar TR, Harris CC. p53 and vascular endothelial growth factor regulate tumor growth of NOS2-expressing human carcinoma cells. Nat. Med. 4: 1371–1376 (1998)

    Article  CAS  Google Scholar 

  25. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS, Bradley A. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356: 215–221 (1992)

    Article  CAS  Google Scholar 

  26. Harvey M, McArthur MJ, Montgomery CA Jr, Butel JS, Bradley A, Donehower LA. Spontaneous and carcinogen-induced tumorigenesis in p53-deficient mice. Nat. Genet. 5: 225–229 (1993)

    Article  CAS  Google Scholar 

  27. Purdie CA, Harrison DJ, Peter A, Dobbie L, White S, Howie SE, Salter DM, Bird CC, Wyllie AH, Hooper ML. Tumour incidence, spectrum, and ploidy in mice with a large deletion in the p53 gene. Oncogene 9: 603–609 (1994)

    CAS  Google Scholar 

  28. Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science 253: 49–53 (1991)

    Article  CAS  Google Scholar 

  29. Chang F, Syrjanen S, Kurvinen K, Syrjanen K. The p53 tumor suppressor gene as a common cellular target in human carcinogenesis. Am. J. Gastroenterol. 88: 174–186 (1993)

    CAS  Google Scholar 

  30. Park HJ, Yang JY, Ambati S, Della-Fera MA, Hausman DB, Rayalam S, Baile CA. Combined effects of genistein, quercetin, and resveratrol in human and 3T3-L1 adipocytes. J. Med. Food 11: 773–783 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki-Moon Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, K.W., Ye, Sh., Kim, Yj. et al. In vitro and in vivo anti-tumor effects of oriental herbal mixtures. Food Sci Biotechnol 19, 1019–1027 (2010). https://doi.org/10.1007/s10068-010-0143-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-010-0143-6

Keywords

Navigation