Skip to main content
Log in

Cultural conditions and nutritional components affecting the growth and bacteriocin production of Lactobacillus plantarum KC21

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

This study was conducted to investigate the effect of cultural conditions and nutritional components on the cell growth and bacteriocin production of Lactobacillus plantarum KC21. In cultures without pH control, the bacteriocin activity of L. plantarum KC21 was higher at 30oC, however, the cell growth rate was higher at 37°C. In MRS broth with an initial pH 6.0, the cell growth was lower, but high bacteriocin levels were recorded than at pH 7.0. The bacteriocin activity was maximal in medium containing 1.0 or 1.5% glucose or 1.0% lactose. Yeast extract (0.25 or 0.5%) added to MRS broth increased the bacteriocin activity, moreover, the bacteriocin in the presence of 1.0 or 3.0% NaCl, 0.5% NH4PO4, or 0.25 or 0.5% KH2PO4 resulted in the activity of 12,800 BU/mL, but excessively high salts concentration hindered the cell growth and bacteriocin production significantly. Besides 1.0 or 2.0 mM MgSO4 highly increased the bacteriocin activity without affecting the growth of L. plantarum KC21, and ascorbic acid (1.0 or 3.0 ppm) enhanced the bacteriocin activity up to 2 fold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Galvez A, Abriouel H, Lopez RL, Ben ON. Bacteriocin-based strategies for food biopreservation. Int. J. Food Microbiol. 120: 51–70 (2007)

    Article  CAS  Google Scholar 

  2. Sobrino-Lopez A, Martin-Belloso O. Use of nisin and other bacteriocins for preservation of dairy products. Int. Dairy J. 18: 329–343 (2008)

    Article  CAS  Google Scholar 

  3. Kim TS, Hur JW, Yu MA, Cheigh CI, Kim KN, Hwang JK, Pyun YR. Antagonism of Helicobacter pylori by bacteriocins of lactic acid bacteria. J. Food Protect. 66: 3–12 (2003)

    CAS  Google Scholar 

  4. Valenta C, Bernkop-Schnurch A, Rigler HP. The anti-staphylococcal effect of nisin in a suitable vehicle: A potential therapy for atopic dermatitis in man. J. Pharm. Pharmacol. 48: 988–991 (1996)

    CAS  Google Scholar 

  5. Riley MA, Wertz JE. Bacteriocin diversity: Ecological and evolutionary perspectives. Biochimie 84: 357–364 (2002)

    Article  CAS  Google Scholar 

  6. Ennahar S, Sashihara T, Sonomoto K, Ishizaki A. Class a bacteriocins: Biosynthesis, structure, and activity. FEMS Microbiol. Rev. 24: 85–106 (2000)

    Article  CAS  Google Scholar 

  7. Oppegard C, Rogne P, Emanuelsen L, Kristiansen PE, Fimland G, Nissen-Meyer J. The two-peptide class bacteriocins: Structure, production, and mode of action. J. Mol. Microb. Biotech. 13: 210–219 (2007)

    Article  CAS  Google Scholar 

  8. Parente E, Ricciardi A. Production, recovery and purification of bacteriocins from lactic acid bacteria. Appl. Microbol. Biot. 52: 628–638 (1999)

    Article  CAS  Google Scholar 

  9. Ogunbanwo ST, Sanni AI, Onilude AA. Influence of cultural conditions on the production of bacteriocin by Lactobacillus brevis OG1. Afr. J. Biotechnol. 2: 179–184 (2003)

    CAS  Google Scholar 

  10. Ganzle MG, Weber S, Hammes WP. Effect of ecological factors on the inhibitory spectrum and activity of bacteriocins. Int. J. Food Microbiol. 46: 207–217 (1999)

    Article  CAS  Google Scholar 

  11. Li C, Bai J, Cai Z, Ouyang F. Optimization of a cultural medium for bacteriocin production by Lactococcus lactis using response surface methodology. J. Biotechnol. 93: 27–34 (2002)

    Article  CAS  Google Scholar 

  12. Cheigh CI, Choi HJ, Park H, Kim SB, Kook MC, Kim TS, Hwang JK, Pyun YR. Influence of growth conditions on the production of a nisin-like bacteriocin by Lactococcus lactis subsp. lactis A164 isolated from kimchi. J. Biotechnol. 95: 225–235 (2002)

    Article  CAS  Google Scholar 

  13. Todorov SD, Dicks LMT. Effect of medium components on bacteriocin production by Lactobacillus plantarum strains ST23LD and ST341LD, isolated form spoiled olive brine. Microbiol. Res. 161: 102–108 (2006)

    Article  CAS  Google Scholar 

  14. Lim SM, Im DS. Screening and characterization of probiotic lactic acid bacteria isolated from Korean fermented foods. J. Microbiol. Biot. 19: 178–186 (2009)

    Article  CAS  Google Scholar 

  15. Chin HS, Shim JS, Kim JM, Yang R, Yoon SS. Detection and antibacterial activity of a bacteriocin produced by Lactobacillus plantarum. Food Sci. Biotechnol. 10: 461–467 (2001)

    Google Scholar 

  16. Parente E, Ricciardi A, Addario G. Influence of pH on growth and bacteriocin production by Lactococcus lactis subsp. lactis 140 NWC during batch fermentation. Appl. Microbiol. Biot. 41: 388–394 (1994)

    CAS  Google Scholar 

  17. Messens W, Verluyten J, Leroy F, Vuyst LD. Modelling growth and bacteriocin production by Lactobacillus curvatus LTH 1174 in response to temperature and pH values used for European sausage fermentation process. Int. J. Food Microbiol. 81: 41–52 (2003)

    Article  CAS  Google Scholar 

  18. Suma K, Misra MC, Varadaraj MC. Plantaricin LP84, a broad spectrum heat-stable bacteriocin of Lactobacillus plantarum NCIM 2084 produced in a simple glucose broth medium. Int. J. Food Microbiol. 40: 17–25 (1998)

    Article  CAS  Google Scholar 

  19. Atrih A, Rekhif N, Milliere JB, Lefebvre G. Detection and characterization of a bacteriocin produced by Lactobacillus plantarum C19. Can. J. Microbiol. 39: 1173–1179 (1993)

    Article  CAS  Google Scholar 

  20. Leal-Sanchez MV, Jimenez-Diaz R, Maldonado-Barragan A, Garrido-Fernandez A, Ruiz-Barba JL. Optimization of bacteriocin production by batch fermentation of Lactobacillus plantarum LPCO10. Appl. Environ. Microb. 68: 4465–4471 (2002)

    Article  CAS  Google Scholar 

  21. Juarez Tomas MS, Bru E, Wiese B, de Ruiz Holgado AAP, Nader-Macias ME. Influence of pH, temperature, and culture media on the growth and bacteriocin production by vaginal Lactobacillus salivarius CRL 1328. J. Appl. Microbiol. 93: 714–724 (2002)

    Article  CAS  Google Scholar 

  22. Herranz C, Martinez JM, Rodriguez JM, Hernandez PE, Cintas LM. Optimization of enterocin P production by batch fermentation of Enterococcus faecium P13 at constant pH. Appl. Microbiol. Biot. 56: 378–383 (2001)

    Article  CAS  Google Scholar 

  23. Aasen IM, Moretro T, Katla T, Axelsson L. Influence of complex nutrients, temperature, and pH on bacteriocin production by Lactobacillus sakei CCUG 42687. Appl. Microbiol. Biot. 53: 159–166 (2000)

    Article  CAS  Google Scholar 

  24. Amiali MN, Lacroix C, Simard RE. High nisin Z production by Lactococcus lactis subsp. lactis biovar. diacetylactis UL719 in whey permeate with aeration. J. Microbiol. Biotechn. 14: 887–889 (1998)

    Article  CAS  Google Scholar 

  25. Barcena JM, Sineriz F, Gonzalex de Llano D, Rodriguez A, Suarez JE. Chemostat production of plantaricin C by Lactobacillus plantarum LL441. Appl. Environ. Microb. 64: 3512–3514 (1998)

    CAS  Google Scholar 

  26. Todorov SD, van Reenen CA, Dicks LM. Optimization of bacteirocin production by Lactobacillus plantarum ST13BR, a strain isolated from barley beer. J. Gen. Appl. Microbiol. 50: 149–157 (2004)

    Article  CAS  Google Scholar 

  27. Todorov SD, Dicks LMT. Optimization of bacteriocin ST311LD production by Enterococcus faecium ST311LD, isolated from spoiled black olives. J. Microbiol. 43: 370–374 (2005)

    CAS  Google Scholar 

  28. Anastasiadou S, Papagianni M, Ambrosiadia I, Koidis P. Rapid quantifiable assessment of nutritional parameters influencing pediocin production by Pediococcus acidilactici NRRL B5627. Bioresource Technol. 99: 6646–6650 (2008)

    Article  CAS  Google Scholar 

  29. Guerra NP, Rua ML, Pastrana L. Nutritional factors affecting the production of two bacteriocins from lactic acid bacteria on whey. Int. Food Microbiol. 70: 267–281 (2001)

    Article  CAS  Google Scholar 

  30. Li C, Bai J, Cai Z, Ouyang F. Optimization of a cultural medium for bacteriocin production by Lactococcus lactis using response surface methodology. J. Biotechnol. 93: 27–34 (2002)

    Article  CAS  Google Scholar 

  31. Verluyten J, Messens W, De Vuyst L. Sodium chloride reduced production of curvacin A, a bacteriocin produced by Lactobacillus curvatus strain LTH 1174, originating from fermented sausage. Appl. Environ. Microb. 70: 2271–2278 (2004)

    Article  CAS  Google Scholar 

  32. Nilsen T, Nes IF, Holo H. An exported inducer peptide regulates bacteriocin production in Enterococcus faecium CTC 492. J. Bacteriol. 180: 1848–1854 (1998)

    CAS  Google Scholar 

  33. Vignolo GM, de Kairuz MN, de Ruiz Holgado AAP, Oliver G. Influence of growth conditions on the production of lactocin 705, a bacteirocin produced by Lactobacillus casei CRL 705. J. Appl. Bacteriol. 78: 5–10 (1995)

    CAS  Google Scholar 

  34. Leroy F, Vankrunkelsven S, De Greef J. De Vuyst L. The stimulating effect of a harsh environment on the bacteriocin activity by Enterococcus faecium RZS C5 and dependency on the environmental stress factor used. Int. J. Food Microbiol. 86: 27–38 (2003)

    Article  Google Scholar 

  35. Enan G, Essawy AA, Uyttendaele M, Debevere J. Antibacterial activity of Lactobacillus plantarum UG1 isolated from dry sausage: Characterization, production, and bactericidal action of plantaricin UG1. Int. J. Microbiol. 30: 189–215 (1996)

    Article  CAS  Google Scholar 

  36. De Vuyst L, Vandamme EJ. Influence of the phosphorus and nitrogen source on nisin production in Lactococcus lactis subsp. lactis batch fermentation using a complex medium. Appl. Microbiol. Biot. 40: 17–22 (1993)

    Article  Google Scholar 

  37. Biswas SR, Ray P, Johnson MC, Ray B. Influence of growth conditions on the production of a bacteriocin, pediocin AcH, by Pediococcus acidilactici H. Appl. Environ. Microb. 57: 1265–1267 (1991)

    CAS  Google Scholar 

  38. Ganzle MG, Weber S, Hammes WP. Effect of ecological factors on the inhibitory spectrum and activity of bacteirocins. Int. J. Food Microbiol. 46: 207–217 (1999)

    Article  CAS  Google Scholar 

  39. Delgado A, Noe Arroyo Lopez F, Brito D, Peres C, Fevereiro P, Garrido-Fernandez A. Optimum bacteriocin production by Lactobacillus plantarum 17.2b requires absence of NaCl and apparently follows a mixed metabolite kinetics. J. Biotechnol. 130: 193–201 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Mee Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, SM. Cultural conditions and nutritional components affecting the growth and bacteriocin production of Lactobacillus plantarum KC21. Food Sci Biotechnol 19, 793–802 (2010). https://doi.org/10.1007/s10068-010-0111-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-010-0111-1

Keywords

Navigation