Skip to main content

Advertisement

Log in

Comparative transcriptomics and network pharmacology analysis to identify the potential mechanism of celastrol against osteoarthritis

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Introduction

Celastrol is a promising therapeutic agent for the treatment of osteoarthritis (OA). However, the mechanism of action of celastrol is unclear. This study was aiming to identify the potential function of celastrol on OA and determine its underlying mechanism.

Method

Celastrol targets were collected from web database searches and literature review, while pathogenic OA targets were obtained from Online Mendelian Inheritance in Man (OMIM) and GeneCards databases. Transcriptomics data was sequenced using an Illumina HiSeq 4000 platform. Celastrol-OA overlapping genes were then identified followed by prediction of the potential function and signaling pathways associated with celastrol using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. A celastrol-target network was constructed to identify the candidate core targets of celastrol. The predictions were then validated by performing molecular docking and molecular dynamics simulation studies.

Results

In total, 96 genes were identified as the putative celastrol targets for treatment of OA. These genes were possibly involved in cell phenotype changes including response to lipopolysaccharide and oxidative stress as well as in cell apoptosis and aging. The genes also induced the mTOR pathway and AGE-RAGE signaling pathway at the intracellular level. Additionally, results indicated that 13 core targets including mTOR, TP53, MMP9, EGFR, CCND1, MAPK1, STAT3, VEGFA, CASP3, TNF, MYC, ESR1, and PTEN were likely direct targets of celastrol in OA. Finally, mTOR was determined as the most likely therapeutic target of celastrol in OA.

Conclusion

This study provides a basic understanding and novel insight into the potential mechanism of celastrol against OA.

Key Points

Our study provides a strong indication that further study of celastrol therapy in OA is required.

mTOR is the most likely therapeutic target of celastrol in OA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The associated raw sequencing data in this study has been deposited in the Sequence Read Archive (SRA) under accession ID PRJNA602231. All other data generated or analyzed during this study are included within the article and its supplementary files.

Abbreviations

BP:

Biological process

CC:

Cellular component

DMOADs:

Disease-modifying osteoarthritis drugs

GO:

Gene ontology

KEGG:

Kyoto Encyclopedia of Genes and Genomes

MD:

Molecular dynamics

MF:

Molecular function

OMIM:

Online Mendelian Inheritance in Man

OA:

Osteoarthritis

PPI:

Protein-protein interaction

PDB:

Protein Data Bank

RMSD:

Root-mean-square deviation

SRA:

Sequence Read Archive

SEArch:

Similarity ensemble approach

TCMSP:

Traditional Chinese medicine systems pharmacology

References

  1. Oo WM, Yu SP, Daniel MS, Hunter DJ (2018) Disease-modifying drugs in osteoarthritis: current understanding and future therapeutics. Expert Opin Emerg Drugs 23(4):331–347. https://doi.org/10.1080/14728214.2018.1547706

    Article  CAS  PubMed  Google Scholar 

  2. Karsdal MA, Michaelis M, Ladel C, Siebuhr AS, Bihlet AR, Andersen JR, Guehring H, Christiansen C, Bay-Jensen AC, Kraus VB (2016) Disease-modifying treatments for osteoarthritis (DMOADs) of the knee and hip: lessons learned from failures and opportunities for the future. Osteoarthr Cartil 24(12):2013–2021. https://doi.org/10.1016/j.joca.2016.07.017

    Article  CAS  Google Scholar 

  3. Venkatesha SH, Dudics S, Astry B, Moudgil KD (2016) Control of autoimmune inflammation by celastrol, a natural triterpenoid. Pathog Dis 74(6):ftw059. https://doi.org/10.1093/femspd/ftw059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li J, Hao J (2019) Treatment of neurodegenerative diseases with bioactive components of Tripterygium wilfordii. Am J Chin Med 47(4):769–785. https://doi.org/10.1142/s0192415x1950040x

    Article  CAS  PubMed  Google Scholar 

  5. Liu J, Lee J, Salazar Hernandez MA, Mazitschek R, Ozcan U (2015) Treatment of obesity with celastrol. Cell 161(5):999–1011. https://doi.org/10.1016/j.cell.2015.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang W, Ha C, Lin T, Wang D, Wang Y, Gong M (2018) Celastrol attenuates pain and cartilage damage via SDF-1/CXCR4 signalling pathway in osteoarthritis rats. J Pharm Pharmacol 70(1):81–88. https://doi.org/10.1111/jphp.12835

    Article  CAS  PubMed  Google Scholar 

  7. Ding QH, Cheng Y, Chen WP, Zhong HM, Wang XH (2013) Celastrol, an inhibitor of heat shock protein 90beta potently suppresses the expression of matrix metalloproteinases, inducible nitric oxide synthase and cyclooxygenase-2 in primary human osteoarthritic chondrocytes. Eur J Pharmacol 708(1-3):1–7. https://doi.org/10.1016/j.ejphar.2013.01.057

    Article  CAS  PubMed  Google Scholar 

  8. Ruiz-Romero C, Rego-Perez I, Blanco FJ (2018) What did we learn from ‘omics’ studies in osteoarthritis. Curr Opin Rheumatol 30(1):114–120. https://doi.org/10.1097/bor.0000000000000460

    Article  CAS  PubMed  Google Scholar 

  9. Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4(11):682–690. https://doi.org/10.1038/nchembio.118

    Article  CAS  PubMed  Google Scholar 

  10. Berger SI, Iyengar R (2009) Network analyses in systems pharmacology. Bioinformatics 25(19):2466–2472. https://doi.org/10.1093/bioinformatics/btp465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, Bryant SH (2009) PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res 37(Web Server issue):W623–W633. https://doi.org/10.1093/nar/gkp456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gfeller D, Michielin O, Zoete V (2013) Shaping the interaction landscape of bioactive molecules. Bioinformatics 29(23):3073–3079. https://doi.org/10.1093/bioinformatics/btt540

    Article  CAS  PubMed  Google Scholar 

  13. Keiser MJ, Roth BL, Armbruster BN, Ernsberger P, Irwin JJ, Shoichet BK (2007) Relating protein pharmacology by ligand chemistry. Nat Biotechnol 25(2):197–206. https://doi.org/10.1038/nbt1284

    Article  CAS  PubMed  Google Scholar 

  14. Ru J, Li P, Wang J, Zhou W, Li B, Huang C, Li P, Guo Z, Tao W, Yang Y, Xu X, Li Y, Wang Y, Yang L (2014) TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform 6:13. https://doi.org/10.1186/1758-2946-6-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cascao R, Fonseca JE, Moita LF (2017) Celastrol: a spectrum of treatment opportunities in chronic diseases. Front Med (Lausanne) 4:69. https://doi.org/10.3389/fmed.2017.00069

    Article  Google Scholar 

  16. Chen SR, Dai Y, Zhao J, Lin L, Wang Y, Wang Y (2018) A mechanistic overview of triptolide and celastrol, natural products from Tripterygium wilfordii Hook F. Front Pharmacol 9:104. https://doi.org/10.3389/fphar.2018.00104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hu M, Luo Q, Alitongbieke G, Chong S, Xu C, Xie L, Chen X, Zhang D, Zhou Y, Wang Z (2017) Celastrol-induced Nur77 interaction with TRAF2 alleviates inflammation by promoting mitochondrial ubiquitination and autophagy. Mol Cell 66(1):141–153.e146. https://doi.org/10.1016/j.molcel.2017.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. The UniProt Consortium (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47(D1):D506–d515. https://doi.org/10.1093/nar/gky1049

    Article  CAS  Google Scholar 

  19. Zhang J, Li C, Zheng Y, Lin Z, Zhang Y, Zhang Z (2017) Inhibition of angiogenesis by arsenic trioxide via TSP-1-TGF-β1-CTGF-VEGF functional module in rheumatoid arthritis. Oncotarget 8(43):73529–73546. https://doi.org/10.18632/oncotarget.19867

    Article  PubMed  PubMed Central  Google Scholar 

  20. Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, Stein TI, Nudel R, Lieder I, Mazor Y, Kaplan S, Dahary D, Warshawsky D, Guan-Golan Y, Kohn A, Rappaport N, Safran M, Lancet D (2016) The GeneCards suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics 54:1.30.31–31.30.33. https://doi.org/10.1002/cpbi.5

    Article  Google Scholar 

  21. Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A (2015) OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res 43(Database issue):D789–D798. https://doi.org/10.1093/nar/gku1205

    Article  CAS  PubMed  Google Scholar 

  22. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Mering CV (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47(D1):D607–d613. https://doi.org/10.1093/nar/gky1131

    Article  CAS  PubMed  Google Scholar 

  23. Nacher JC, Schwartz JM (2008) A global view of drug-therapy interactions. BMC Pharmacol 8:5. https://doi.org/10.1186/1471-2210-8-5

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3(11):935–949. https://doi.org/10.1038/nrd1549

    Article  CAS  PubMed  Google Scholar 

  25. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242. https://doi.org/10.1093/nar/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu DD, Zhang BL, Yang JB, Zhou K (2020) Celastrol ameliorates endoplasmic stress-mediated apoptosis of osteoarthritis via regulating ATF-6/CHOP signalling pathway. J Pharm Pharmacol 72(6):826–835. https://doi.org/10.1111/jphp.13250

    Article  CAS  PubMed  Google Scholar 

  27. Li X, Wei W, Zhao Z, Lv S (2019) Tripterine up-regulates miR-223 to alleviate lipopolysaccharide-induced damage in murine chondrogenic ATDC5 cells. Int J Immunopathol Pharmacol 33:2058738418824521. https://doi.org/10.1177/2058738418824521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Du Z, Zhang W, Wang S, Zhang J, He J, Wang Y, Dong Y, Huo M (2019) Celastrol protects human retinal pigment epithelial cells against hydrogen peroxide mediated oxidative stress, autophagy, and apoptosis through sirtuin 3 signal pathway. J Cell Biochem 120(6):10413–10420. https://doi.org/10.1002/jcb.28326

    Article  CAS  PubMed  Google Scholar 

  29. Xu XJ, Zhao WB, Feng SB, Sun C, Chen Q, Ni B, Hu HY (2017) Celastrol alleviates angiotensin II-mediated vascular smooth muscle cell senescence via induction of autophagy. Mol Med Rep 16(5):7657–7664. https://doi.org/10.3892/mmr.2017.7533

    Article  CAS  PubMed  Google Scholar 

  30. Li L, Wang B, Li Y, Li L, Dai Y, Lv G, Wu P, Li P (2020) Celastrol regulates bone marrow mesenchymal stem cell fate and bone-fat balance in osteoporosis and skeletal aging by inducing PGC-1α signaling. Aging (Albany NY) 12(17):16887–16898. https://doi.org/10.18632/aging.103590

    Article  CAS  Google Scholar 

  31. Sherwood J (2019) Osteoarthritis year in review 2018: biology. Osteoarthr Cartil 27(3):365–370. https://doi.org/10.1016/j.joca.2018.10.005

    Article  CAS  Google Scholar 

  32. Zhang Y, Geng C, Liu X, Li M, Gao M, Liu X, Fang F, Chang Y (2017) Celastrol ameliorates liver metabolic damage caused by a high-fat diet through Sirt1. Mol Metab 6(1):138–147. https://doi.org/10.1016/j.molmet.2016.11.002

    Article  CAS  PubMed  Google Scholar 

  33. Allen SD, Liu YG, Kim T, Bobbala S, Yi S, Zhang X, Choi J, Scott EA (2019) Celastrol-loaded PEG-b-PPS nanocarriers as an anti-inflammatory treatment for atherosclerosis. Biomater Sci 7(2):657–668. https://doi.org/10.1039/c8bm01224e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nie Y, Fu C, Zhang H, Zhang M, Xie H, Tong X, Li Y, Hou Z, Fan X, Yan M (2020) Celastrol slows the progression of early diabetic nephropathy in rats via the PI3K/AKT pathway. BMC Complement Med Ther 20(1):321. https://doi.org/10.1186/s12906-020-03050-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li X, Zhu G, Yao X, Wang N, Hu R, Kong Q, Zhou D, Long L, Cai J, Zhou W (2018) Celastrol induces ubiquitin-dependent degradation of mTOR in breast cancer cells. Onco Targets Ther 11:8977–8985. https://doi.org/10.2147/ott.S187315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang Y, Vasheghani F, Li YH, Blati M, Simeone K, Fahmi H, Lussier B, Roughley P, Lagares D, Pelletier JP, Martel-Pelletier J, Kapoor M (2015) Cartilage-specific deletion of mTOR upregulates autophagy and protects mice from osteoarthritis. Ann Rheum Dis 74(7):1432–1440. https://doi.org/10.1136/annrheumdis-2013-204599

    Article  CAS  PubMed  Google Scholar 

  37. Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Müller F (2003) Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 426(6967):620. https://doi.org/10.1038/426620a

    Article  CAS  PubMed  Google Scholar 

  38. Pal B, Endisha H, Zhang Y, Kapoor M (2015) mTOR: a potential therapeutic target in osteoarthritis? Drugs R D 15(1):27–36. https://doi.org/10.1007/s40268-015-0082-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee JH, Choi KJ, Seo WD, Jang SY, Kim M, Lee BW, Kim JY, Kang S, Park KH, Lee YS, Bae S (2011) Enhancement of radiation sensitivity in lung cancer cells by celastrol is mediated by inhibition of Hsp90. Int J Mol Med 27(3):441–446. https://doi.org/10.3892/ijmm.2011.601

    Article  CAS  PubMed  Google Scholar 

  40. Zhang X, Yang J, Chen M, Li L, Huan F, Li A, Liu Y, Xia Y, Duan JA, Ma S (2016) Metabolomics profiles delineate uridine deficiency contributes to mitochondria-mediated apoptosis induced by celastrol in human acute promyelocytic leukemia cells. Oncotarget 7(29):46557–46572. https://doi.org/10.18632/oncotarget.10286

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ito K, Maruyama Z, Sakai A, Izumi S, Moriishi T, Yoshida CA, Miyazaki T, Komori H, Takada K, Kawaguchi H, Komori T (2014) Overexpression of Cdk6 and Ccnd1 in chondrocytes inhibited chondrocyte maturation and caused p53-dependent apoptosis without enhancing proliferation. Oncogene 33(14):1862–1871. https://doi.org/10.1038/onc.2013.130

    Article  CAS  PubMed  Google Scholar 

  42. Jeon OH, Kim C, Laberge RM, Demaria M, Rathod S, Vasserot AP, Chung JW, Kim DH, Poon Y, David N, Baker DJ, van Deursen JM, Campisi J, Elisseeff JH (2017) Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat Med 23(6):775–781. https://doi.org/10.1038/nm.4324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jimi E, Fei H, Nakatomi C (2019) NF-κB signaling regulates physiological and pathological chondrogenesis. Int J Mol Sci 20(24). https://doi.org/10.3390/ijms20246275

Download references

Code availability

Not applicable.

Funding

This work was supported by grants from the National Natural Science Foundation of China (81771748) and Harbin Technology Bureau Research Fund (2017RAQXJ196).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiyi Zhang or Zhiguo Lin.

Ethics declarations

Ethics approval

Ethical approval was obtained from the First Affiliated Hospital of Harbin Medical University.

Consent to participate

Written informed was acquired from each participant before surgery.

Consent for publication

Informed consent for publication was obtained from each study participant and each patient.

Disclosures

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 191 kb)

ESM 2

(DOCX 24 kb)

ESM 3

(DOCX 30 kb)

ESM 4

(DOCX 35 kb)

ESM 5

(DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, S., Wang, H., Wang, M. et al. Comparative transcriptomics and network pharmacology analysis to identify the potential mechanism of celastrol against osteoarthritis. Clin Rheumatol 40, 4259–4268 (2021). https://doi.org/10.1007/s10067-021-05726-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-021-05726-3

Keywords

Navigation