Skip to main content

Advertisement

Log in

Assessment of interstitial lung disease in systemic sclerosis using the quantitative CT algorithm CALIPER

  • Brief Report
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Interstitial lung disease (ILD) remains a major cause of morbidity and mortality in systemic sclerosis (SSc). Study aim is to characterize and quantify SSc-ILD by using Computer-Aided Lung Informatics for Pathology Evaluation and Rating (CALIPER). Secondly, our objective is to evaluate which radiological pattern is predictive of lung function decline at 12 months follow-up. In the prospective study (IRB 5435), 66 SSc patients underwent high-resolution computerized tomography (HRCT) at baseline. HRCT was performed according to standard protocol using a CT 64GE light speed VCT power scanner. CALIPER classified lung parenchyma on volume units. Every volume unit was classified into radiological parenchymal patterns (honeycombing, reticular and ground glass). Pulmonary function tests (PFTs) were performed at baseline and after 12 months of follow-up. Cigarette smoking and other lung diseases unrelated to SSc are exclusion criteria. CALIPER analysis showed normal lung parenchyma 87.4 ± 9.8%, ground glass 2.8 ± 5.3%, reticular 4 ± 5.7%, and honeycombing 1 ± 1%. In multiple regression analysis, FEV1 (p < 0.0001), FVC (p = 0.001), and DLCO (p < 0.0001) measurements at baseline showed a negative correlation with the reticular pattern percentage. At follow-up, DLCO reduction showed a positive correlation (p < 0.001) with the percentage of ground glass pattern (r = 0.33, beta coefficient = 0.51). In the ROC curve analysis, ground glass score is a good predictor (0.75, p = 0.009; 95% CI 0.59–0.91) of DLCO worsening, defined as a decrease of more than 10% of DLCO. Using a cutoff ≥ 4.5 for ground glass score, the RR for DLCO worsening is 6.8 (p < 0.01; 95% CI 1.6–29.2). The results of this study show that CALIPER is useful not only for quantifying lung damage but also for assessing worsening PFTs, but larger studies are needed to confirm these preliminary data.

Key Points

At baseline reticular pattern showed negative correlation with PFTs

At follow-up ground glass pattern predicts worsening of DLCO

CALIPER is a useful to quantify lung damage

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Adler S, Huscher D, Siegert E, Allanore Y, Czirják L, DelGaldo F et al (2018) EUSTAR co-workers on behalf of the DeSScipher project research group within the EUSTAR network. Systemic sclerosis associated interstitial lung disease - individualized immunosuppressive therapy and course of lung function: results of the EUSTAR group. Arthritis Res Ther 20:17. https://doi.org/10.1186/s13075-018-1517-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Solomon JJ, Olson AL, Fischer A, Bull T, Brown KK, Raghu G (2013) Scleroderma lung disease. Eur Respir Rev 22:6–19. https://doi.org/10.1183/09059180.00005512

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ariani A, Silva M, Seletti V, Bravi E, Saracco M, Parisi S, de Gennaro F, Idolazzi L, Caramaschi P, Benini C, Bodini FC, Scirè CA, Carrara G, Lumetti F, Alfieri V, Bonati E, Lucchini G, Aiello M, Santilli D, Mozzani F, Imberti D, Michieletti E, Arrigoni E, Delsante G, Pellerito R, Fusaro E, Chetta A, Sverzellati N (2017) Quantitative chest computed tomography is associated with two prediction models of mortality in interstitial lung disease. Rheumatology 56:922–927. https://doi.org/10.1093/rheumatology/kew480

    Article  PubMed  Google Scholar 

  4. Jacob J, Bartholmai BJ, Rajagopalan S, Kokosi M, Nair A, Karwoski R, Walsh SL, Wells AU, Hansell DM (2017) Mortality prediction in idiopathic pulmonary fibrosis: evaluation of computer-based CT analysis with conventional severity measures. Eur Respir J 49:1601011. https://doi.org/10.1183/13993003.01011-2016

    Article  PubMed  Google Scholar 

  5. Baqir M, Makol A, Osborn TG, Bartholmai BJ, Ryu JH (2017) Mycophenolate mofetil for scleroderma-related interstitial lung disease: a real world experience. PLoS One 12:e0177107. https://doi.org/10.1371/journal.pone.0177107eCollection 2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. van den Hoogen F, Khanna D, Fransen J, Johnson SR, Baron M, Tyndall A, Matucci-Cerinic M, Naden RP, Medsger TA Jr, Carreira PE, Riemekasten G, Clements PJ, Denton CP, Distler O, Allanore Y, Furst DE, Gabrielli A, Mayes MD, van Laar J, Seibold JR, Czirjak L, Steen VD, Inanc M, Kowal-Bielecka O, Müller-Ladner U, Valentini G, Veale DJ, Vonk MC, Walker UA, Chung L, Collier DH, Ellen Csuka M, Fessler BJ, Guiducci S, Herrick A, Hsu VM, Jimenez S, Kahaleh B, Merkel PA, Sierakowski S, Silver RM, Simms RW, Varga J, Pope JE (2013) 2013 classification criteria for systemic sclerosis: an American college of rheumatology/European league against rheumatism collaborative initiative. Ann Rheum Dis 72:1747–1755. https://doi.org/10.1136/annrheumdis-2013-204424

    Article  PubMed  Google Scholar 

  7. LeRoy EC, Black C, Fleischmajer R, Jablonska S, Krieg T, Medsger TA Jr, Rowell N, Wollheim F (1998) Scleroderma (systemic sclerosis): classification, subsets and pathogenesis. J Rheumatol 15:202–205

    Google Scholar 

  8. Clements P, Lachenbruch P, Siebold J, White B, Weiner S, Martin R, Weinstein A, Weisman M, Mayes M, Collier D (1995) Inter and intraobserver variability of total skin thickness score (modified Rodnan TSS) in systemic sclerosis. J Rheumatol 22:1281–1285

    CAS  PubMed  Google Scholar 

  9. Cutolo M, Sulli A, Secchi ME, Paolino S, Pizzorni C (2006) Nailfold capillaroscopy is useful for the diagnosis and follow-up of autoimmune rheumatic diseases. A future tool for the analysis of microvascular heart involvement? Rheumatology 45:43–46

    Article  Google Scholar 

  10. Jacob J, Bartholmai BJ, Rajagopalan S, Kokosi M, Nair A, Karwoski R, Raghunath SM, Walsh SL, Wells AU, Hansell DM (2016) Automated quantitative computed tomography versus visual computed tomography scoring in idiopathic pulmonary fibrosis: validation against pulmonary function. J Thorac Imaging 31:304–311. https://doi.org/10.1097/RTI.0000000000000220

    Article  PubMed  Google Scholar 

  11. Hu S, Hoffman EA, Reinhardt JM (2001) Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images. IEEE Trans Med Imaging 20:490–498

    Article  CAS  Google Scholar 

  12. Bartholmai BJ, Raghunath S, Karwoski RA, Moua T, Rajagopalan S, Maldonado F, Decker PA, Robb RA (2013) Quantitative computed tomography imaging of interstitial lung diseases. J Thorac Imaging 28:298–307. https://doi.org/10.1097/RTI.0b013e3182a21969

    Article  PubMed  Google Scholar 

  13. Shikata H, McLennan G, Hoffman EA, Sonka M (2009) Segmentation of pulmonary vascular trees from thoracic 3D CT images. Int J Biomed Imaging 2009:636240. https://doi.org/10.1155/2009/636240

    Article  PubMed  PubMed Central  Google Scholar 

  14. Miller MR, Crapo R, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, Enright P, van der Grinten C, Gustafsson P, Jensen R, Johnson DC, MacIntyre N, McKay R, Navajas D, Pedersen OF, Pellegrino R, Viegi G, Wanger J, ATS/ERS Task Force (2005) ATS/ERS task force general considerations for lung function testing. Eur Respir J 26:153–161

    Article  CAS  Google Scholar 

  15. Aisen AM, Broderick LS, Winer-Muram H, Brodley CE, Kak AC, Pavlopoulou C, Dy J, Shyu CR, Marchiori A (2003) Automated storage and retrieval of thin-section CT images to assist diagnosis: system description and preliminary assessment. Radiology 228:265–270

    Article  Google Scholar 

  16. Galbán CJ, Han MK, Boes JL, Chughtai KA, Meyer CR, Johnson TD, Galbán S, Rehemtulla A, Kazerooni EA, Martinez FJ, Ross BD (2012) Computed tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression. Nat Med 18:1711–1715. https://doi.org/10.1038/nm.2971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Goldin JG, Lynch DA, Strollo DC, Suh RD, Schraufnagel DE, Clements PJ, Elashoff RM, Furst DE, Vasunilashorn S, McNitt-Gray M, Brown MS, Roth MD, Tashkin DP, Scleroderma Lung Study Research Group (2008) Scleroderma lung study research group. High-resolution CT scan findings in patients with symptomatic scleroderma-related interstitial lung disease. Chest 134:358–367. https://doi.org/10.1378/chest.07-2444

    Article  PubMed  Google Scholar 

  18. Goh NS, Desai SR, Veeraraghavan S, Hansell DM, Copley SJ, Maher TM, Corte TJ, Sander CR, Ratoff J, Devaraj A, Bozovic G, Denton CP, Black CM, du Bois RM, Wells AU (2008) Interstitial lung disease in systemic sclerosis a simple staging system. Am J Respir Crit Care Med 177:1248–1254. https://doi.org/10.1164/rccm.200706-877OC

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edoardo Rosato.

Ethics declarations

Disclosures

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrazza, A.M., Gigante, A., Gasperini, M.L. et al. Assessment of interstitial lung disease in systemic sclerosis using the quantitative CT algorithm CALIPER. Clin Rheumatol 39, 1537–1542 (2020). https://doi.org/10.1007/s10067-020-04938-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-020-04938-3

Keywords

Navigation