Skip to main content

Advertisement

Log in

Telomere dysfunction-related serological markers and oxidative stress markers in rheumatoid arthritis patients: correlation with diseases activity

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Rheumatoid arthritis (RA) is an inflammatory autoimmune polyarthritis with progressive destruction of the synovial joints associated with systemic manifestations. RA is characterized by infiltration of the synovial joints with inflammatory immune cells with premature immunosenescence. Shorter telomere length in the peripheral blood cells and increase in the oxidative stress have been detected in patients with RA. The aim of the present study was to study the association of markers of telomere shortening and oxidative stress with RA disease activity. Sixty-one RA patients and 15 healthy controls were enrolled in the study. Demographic data, clinical examination, and disease activity status were evaluated for the RA patients. Serum levels of chitinase and NAG (telomere markers) were determined by biochemical reactions using colloidal chitin and NAG as substrates, respectively. Nitric oxide and superoxide dismutase (oxidative stress markers) were determined colometrically and spectrophotometrically, respectively, in the sera of RA patients and controls. Results were correlated with disease activity. Indices of telomere shortening and oxidative markers were significantly higher in RA patients compared to controls. These indices were correlated with signs of disease activity (including number of swollen and tender joints, DAS-28, and inflammatory markers). Rheumatoid arthritis is a disease in which markers of telomere shortening and elevated oxidant stress correlate with disease activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Lajas C, Abasolo L, Bellajdel B, Hernández-García C, Carmona L, Vargas E, Lázaro P, Jover JA (2003) Costs and predictors of costs in rheumatoid arthritis: a prevalence-based study. Arthritis Care Res 49(1):64–70

    Article  Google Scholar 

  2. Andrews NP, Fujii H, Goronzy JJ, Weyand CM (2010) Telomeres and immunological diseases of aging. Gerontology 56(4):390–403

    Article  CAS  Google Scholar 

  3. Costenbader KH, Prescott J, Zee RY, De Vivo I (2011) Immunosenescence and rheumatoid arthritis: does telomere shortening predict impending disease? Autoimmun Rev 10(9):569–573

    Article  CAS  Google Scholar 

  4. Weyand CM, Yang Z, Goronzy JJ (2014) T cell aging in rheumatoid arthritis. Curr Opin Rheumatol 26(1):93–100

    Article  CAS  Google Scholar 

  5. Colmegna I, Weyand CM (2011) Haematopoietic stem and progenitor cells in rheumatoid arthritis. Rheumatology (Oxford, England) 50(2):252–260

    Article  Google Scholar 

  6. Bowers JS, Nelson MH, Majchrzak K, Bailey SR, Rohrer B, Kaiser ADM, et al. (2017) Th17 cells are refractory to senescence and retain robust antitumor activity after long-term ex vivo expansion. JCI Insight 2 (5)

  7. Colmegna I, Diaz-Borjon A, Fujii H, Schaefer L, Goronzy JJ, Weyand CM (2008) Defective proliferative capacity and accelerated telomeric loss of hematopoietic progenitor cells in rheumatoid arthritis. Arthritis Rheum 58(4):990–1000

    Article  CAS  Google Scholar 

  8. Jiang H, Schiffer E, Song Z, Wang J, Zurbig P, Thedieck K, Moes S, Bantel H, Saal N, Jantos J, Brecht M, Jeno P, Hall MN, Hager K, Manns MP, Hecker H, Ganser A, Dohner K, Bartke A, Meissner C, Mischak H, Ju Z, Rudolph KL (2008) Proteins induced by telomere dysfunction and DNA damage represent biomarkers of human aging and disease. Proc Natl Acad Sci U S A 105(32):11299–11304

    Article  CAS  Google Scholar 

  9. Xiao F, Zheng X, Cui M, Shi G, Chen X, Li R, Song Z, Rudolph KL, Chen B, Ju Z (2011) Telomere dysfunction–related serological markers are associated with type 2 diabetes. Diabetes Care 34(10):2273–2278

    Article  CAS  Google Scholar 

  10. Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO, 3rd, et al. 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European league against rheumatism collaborative initiative. Arthritis Rheum 2010;62(9):2569–2581

  11. Prevoo ML, van ‘t Hof MA, Kuper HH, van Leeuwen MA, van de Putte LB, van Riel PL (1995) Modified disease activity scores that include twenty-eight-joint counts. Development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum 38(1):44–48

    Article  CAS  Google Scholar 

  12. van Gestel AM, Haagsma CJ, van Riel PL (1998) Validation of rheumatoid arthritis improvement criteria that include simplified joint counts. Arthritis Rheum 41(10):1845–1850

    Article  Google Scholar 

  13. Skrha J, Perusicova J, Stolba P, Stibor V, Pav J (1987) Comparison of N-acetyl-beta-glucosaminidase and albuminuria with clinical finding of microangiopathy in type I diabetes mellitus. Clinica Chimica Acta; Int J Clin Chem 166(2–3):135–141

    Article  CAS  Google Scholar 

  14. Lee YG, Chung KC, Wi SG, Lee JC, Bae HJ (2009) Purification and properties of a chitinase from Penicillium sp. LYG 0704. Protein Expr Purif 65(2):244–250

    Article  CAS  Google Scholar 

  15. Reissig JL, Strominger JL, Leloir LF (1955) A modified colorimetric method for the estimation of N-acetylamino sugars. J Biol Chem 217(2):959–966

    CAS  PubMed  Google Scholar 

  16. Van Bezooijen R, Que I, Ederveen A, Kloosterboer H, Papapoulos S, Lowik C (1998) Plasma nitrate + nitrite levels are regulated by ovarian steroids but do not correlate with trabecular bone mineral density in rats. J Endocrinol 159(1):27–34

    Article  Google Scholar 

  17. Bannister JV, Calabrese L (2006) Assays for superoxide dismutase. Methods of Biochemical Analysis 32:279–312

    Article  Google Scholar 

  18. Grau A, Codony R, Rafecas M, Barroeta AC, Guardiola F (2000) Lipid hydroperoxide determination in dark chicken meat through a ferrous oxidation− xylenol orange method. J Agric Food Chem 48(9):4136–4143

    Article  CAS  Google Scholar 

  19. Kordinas V, Ioannidis A, Chatzipanagiotou S (2016) The telomere/telomerase system in chronic inflammatory diseases. Cause or effect? Genes 7(9):60

    Article  Google Scholar 

  20. Hohensinner PJ, Goronzy Jö J, Weyand CM (2011) Telomere dysfunction, autoimmunity and aging Aging and Disease ;2(6):524–37

  21. Zhang J, Rane G, Dai X, Shanmugam MK, Arfuso F, Samy RP, Lai MKP, Kappei D, Kumar AP, Sethi G (2016) Ageing and the telomere connection: an intimate relationship with inflammation. Ageing Res Rev 25:55–69

    Article  CAS  Google Scholar 

  22. Lin J, Sun J, Wang S, Milush JM, Baker CAR, Coccia M, Effros RB, Puterman E, Blackburn E, Prather AA, Epel E (2018) In vitro proinflammatory gene expression predicts in vivo telomere shortening: a preliminary study. Psychoneuroendocrinology 96:179–187

    Article  CAS  Google Scholar 

  23. Shay JW, Zou Y, Hiyama E, Wright WE (2001) Telomerase and cancer. Hum Mol Genet 10(7):677–685

    Article  CAS  Google Scholar 

  24. Lee YHB, S C. Association between shortened telomere length and rheumatoid arthritis - a meta-analysis. Z Rheumatol. 2016; 0209

  25. Dehbi AR, TR; Broen, JC. Accelerated telomere shortening in rheumatic diseases: cause or consequence?. Expert Rev Clin Immunol 2013;9(12):1193–204

    Article  CAS  Google Scholar 

  26. Salonen EM, Miettinen A, Walle TK, Koskenmies S, Kere J, Julkunen H (2004) Anti-telomere antibodies in systemic lupus erythematosus (SLE): a comparison with five antinuclear antibody assays in 430 patients with SLE and other rheumatic diseases. Ann Rheum Dis 63(10):1250–1254

    Article  CAS  Google Scholar 

  27. Kawashima M, Kawakita T, Maida Y, Kamoi M, Ogawa Y, Shimmura S et al (2011) Comparison of telomere length and association with progenitor cell markers in lacrimal gland between Sjögren syndrome and non-Sjögren syndrome dry eye patients. Mol Vis 17:1397

    PubMed  PubMed Central  Google Scholar 

  28. Georgin-Lavialle S, Aouba A, Mouthon L, Londono-Vallejo JA, Lepelletier Y, Gabet A-S, Hermine O (2010) The telomere/telomerase system in autoimmune and systemic immune-mediated diseases. Autoimmun Rev 9(10):646–651

    Article  CAS  Google Scholar 

  29. Wallace D, Salonen E-M, Avaniss-Aghajani E, Morris R, Metzger A, Pashinian N (2000) Anti-telomere antibodies in systemic lupus erythematosus: a new ELISA test for anti-DNA with potential pathogenetic implications. Lupus 9(5):328–332

    Article  CAS  Google Scholar 

  30. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS et al (1988) The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 31(3):315–324

    Article  CAS  Google Scholar 

  31. Fessler J, Raicht A, Husic R, Ficjan A, Schwarz C, Duftner C et al (2017) novel senescent regulatory T-cell subset with impaired suppressive function in rheumatoid arthritis. Front Immunol 8:300

    Article  Google Scholar 

  32. Lindstrom TM, Robinson WH (2010) Rheumatoid arthritis: a role for immunosenescence? J Am Geriatr Soc 58(8):1565–1575

    Article  Google Scholar 

  33. Steer SE, Williams FM, Kato B, Gardner JP, Norman PJ, Hall MA, Kimura M, Vaughan R, Aviv A, Spector TD (2007) Reduced telomere length in rheumatoid arthritis is independent of disease activity and duration. Ann Rheum Dis 66(4):476–480

    Article  CAS  Google Scholar 

  34. Aviv A (2002) Telomeres, sex, reactive oxygen species, and human cardiovascular aging. J Mol Med (Berlin, Germany) 80(11):689–695

    Article  CAS  Google Scholar 

  35. Calado RT, Yewdell WT, Wilkerson KL, Regal JA, Kajigaya S, Stratakis CA, Young NS (2009) Sex hormones, acting on the TERT gene, increase telomerase activity in human primary hematopoietic cells. Blood 114(11):2236–2243

    Article  CAS  Google Scholar 

  36. Barrett EL, Richardson DS (2011) Sex differences in telomeres and lifespan. Aging Cell 10(6):913–921

    Article  CAS  Google Scholar 

  37. Signorelli SS, Neri S, Sciacchitano S, Pino LD, Costa MP, Marchese G, Celotta G, Cassibba N, Pennisi G, Caschetto S (2006) Behaviour of some indicators of oxidative stress in postmenopausal and fertile women. Maturitas 53(1):77–82

    Article  CAS  Google Scholar 

  38. Vural P, Akgül C, Canbaz M (2005) Effects of menopause and tibolone on antioxidants in postmenopausal women. Ann Clin Biochem 42(3):220–223

    Article  CAS  Google Scholar 

  39. Yagi K (1997) Female hormones act as natural antioxidants--a survey of our research. Acta Biochim Pol 44(4):701–709

    CAS  PubMed  Google Scholar 

  40. Yamanishi Y, Hiyama K, Maeda H, Ishioka S, Murakami T, Hiyama E, Kurose Y, Shay JW, Yamakido M (1998) Telomerase activity in rheumatoid synovium correlates with the mononuclear cell infiltration level and disease aggressiveness of rheumatoid arthritis. J Rheumatol 25(2):214–220

    CAS  PubMed  Google Scholar 

  41. Adamali HI, Delgado CM, Stock C, Lindhal GE, Molyneaux PL, Russell AM, et al. Telomere (TL) shortening is associated with disease severity in scleroderma (SSC) associated interstitial lung disease. 2012

    Google Scholar 

  42. Fujii H, Shao L, Colmegna I, Goronzy JJ, Weyand CM (2009) Telomerase insufficiency in rheumatoid arthritis. Proc Natl Acad Sci 106(11):4360–4365

    Article  CAS  Google Scholar 

  43. Steer SE, Williams FMK, Kato B, Gardner JP, Norman PJ, Hall MA, Kimura M, Vaughan R, Aviv A, Spector TD (2007) Reduced telomere length in rheumatoid arthritis is independent of disease activity and duration. Ann Rheum Dis 66(4):476–480

    Article  CAS  Google Scholar 

  44. Lin J, Epel ES, Blackburn EH (2009) Telomeres, telomerase, stress, and aging. Handbook of Neuroscience for the Behavioral Sciences

  45. Desai PB, Manjunath S, Kadi S, Chetana K, Vanishree J (2010) Oxidative stress and enzymatic antioxidant status in rheumatoid arthritis: a case control study. Eur Rev Med Pharmacol Sci 14(11):959–967

    PubMed  Google Scholar 

  46. Datta S, Kundu S, Ghosh P, De S, Ghosh A, Chatterjee M (2014) Correlation of oxidant status with oxidative tissue damage in patients with rheumatoid arthritis. Clin Rheumatol 33(11):1557–1564

    Article  Google Scholar 

  47. Alver A, Şentürk A, Çakirbay H, Menteşe A, Gökmen F, Keha EE, Uçar F (2011) Carbonic anhydrase II autoantibody and oxidative stress in rheumatoid arthritis. Clin Biochem 44(17):1385–1389

    Article  CAS  Google Scholar 

  48. Staroń A, Mąkosa G, Koter-Michalak M (2012) Oxidative stress in erythrocytes from patients with rheumatoid arthritis. Rheumatol Int 32(2):331–334

    Article  Google Scholar 

  49. Hassan SZ, Gheita TA, Kenawy SA, Fahim AT, EL-SOROUGY IM, Abdou MS (2011) Oxidative stress in systemic lupus erythematosus and rheumatoid arthritis patients: relationship to disease manifestations and activity. Int J Rheum Dis 14(4):325–331

    Article  Google Scholar 

  50. Kamanlı A, Nazıroğlu M, Aydılek N, Hacıevlıyagil C (2004) Plasma lipid peroxidation and antioxidant levels in patients with rheumatoid arthritis. Cell Biochem Funct 22(1):53–57

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank all the patients and their families, and the healthy controls, for their enthusiastic support during this research study.

Author information

Authors and Affiliations

Authors

Contributions

RMG contributed to study concept and design, acquisition of data, draft and revision of the report, statistical analyses, and interpretation of data. NH contributed to acquisition of data, draft and revision of report, and final approval of the version of the article to be published. MMZ, MMA, MRA, MSE, and MGE contributed to cases recruitments.YE contributed to final approval of the version of the article to be published. DEF contributed to draft revision of the report, statistical analyses, and final approval of the version of the article to be published.

Corresponding author

Correspondence to Rania M. Gamal.

Ethics declarations

Disclosures

None.

Ethics approval

The Ethics Committee of Assiut University Hospitals approved study protocols, and each participant signed a written informed consent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gamal, R.M., Hammam, N., Zakary, M.M. et al. Telomere dysfunction-related serological markers and oxidative stress markers in rheumatoid arthritis patients: correlation with diseases activity. Clin Rheumatol 37, 3239–3246 (2018). https://doi.org/10.1007/s10067-018-4318-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-018-4318-5

Keywords

Navigation