Skip to main content
Log in

Experimental study on hydraulic fracturing properties of elliptical boreholes

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Subsurface rocks are in the in situ stress state prior to drilling. The original and intact borehole subjected to stress redistribution can be deformed during field operations, and elliptical boreholes will be generated. Most laboratory scale hydraulic fracturing experimental specimens were predrilled in the center without considering lateral and axial pressure. In order to investigate the hydraulic fracturing characteristics of boreholes with non-circular appearance commonly seen in the field, hydraulic fracturing experiments were performed on boreholes with elliptical morphology. These experiments provide a comparison of elliptical and circular boreholes, and indicated that the horizontal in situ stress difference and borehole shape affect the breakdown pressure together. When the horizontal stress difference exists, the breakdown pressure reduces with the increase of the short-axis of elliptical boreholes. At zero horizontal stress difference, the situation is just the opposite. The analytic solutions of the stress fields near the elliptical borehole were obtained by employing the complex variable function. The fracture initiation conforms to the maximum tensile stress criterion. Whether the borehole is elliptical or circular, the damage process during hydraulic fracturing will cause fractures to eventually curve to the major stress direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data accessibility

Data available within the article or its supplementary materials.

Abbreviations

σ 1 :

Maximum principal stress

σ 3 :

Minimum principal stress

σ h :

Minor horizontal stress

σ V :

Vertical stress (overburden stress)

m :

Shape parameter

σ ρρ :

Radial stress

σ θθ :

Circumferential stress

τ ρθ :

Tangential shear stress

σ 2 :

Intermediate principal stress

σ H :

Major horizontal stress

σ H-σ h :

Horizontal in-situ stress difference

2a :

Elliptical borehole long-axis

2b :

Elliptical borehole short-axis

q 3 :

Borehole internal pressure

σ t :

Tensile strength of a rock

p b :

Breakdown pressure

ρ :

Distance between the point inside the unit circle and the center of the circle

α :

Angle between the elliptical long-axis and major horizontal stress (σH) direction

z :

Point on the complex plane Z occupied by an ellipse is mapped to the interior of the central unit circle on complex plane ξ

θ :

Angle indicates the orientation of the stresses around the wellbore circumference. It is measured counterclockwise from the x-axis direction and varies from 0 to 360°

References

  • Aadnoy BS, Angell-Olsen F (1995) Some effects of ellipticity on the fracturing and collapse behavior of a borehole. Int J Rock Mech Min Sci Geomech Abstr 32(6):621–627. https://doi.org/10.1016/0148-9062(95)00016-a

  • Arthur JD, Bohm B, Layne M (2008) Hydraulic fracturing considerations for natural gas wells of the Marcellus shale. In: Proceedings of the Ground Water Protection Council, Cincinnati, Ohio pp. 21–24 (September).

  • Basu A, Mishra DA, Roychowdhury K (2013) Rock failure modes under uniaxial compression, Brazilian, and point load tests. Bull Eng Geol Environ 72(3–4):457–475. https://doi.org/10.1007/s10064-013-0505-4

  • Bennour Z, Ishida T, Nagaya Y, Chen Y, Nara Y, Chen Q, Sekine K, Nagano Y (2015) Crack extension in hydraulic fracturing of shale cores using viscous oil, water, and liquid carbon dioxide. Rock Mech Rock Eng 48(4):1463–1473. https://doi.org/10.1007/s00603-015-0774-2

  • Cuss RJ, Rutter EH, Holloway RF (2003) Experimental observations of the mechanics of borehole failure in porous sandstone. Int J Rock Mech Min Sci 40(5):747–761. https://doi.org/10.1016/s1365-1609(03)00068-6

  • Chitrala Y, Moreno C, Sondergeld C, Rai C (2013) An experimental investigation into hydraulic fracture propagation under different applied stresses in tight sands using acoustic emissions. J Pet Sci Eng 108(3):151–161. https://doi.org/10.1016/j.petrol.2013.01.002

  • Cai C, Gao F, Li G, Huang Z, Hou P (2016) Evaluation of coal damage and cracking characteristics due to liquid nitrogen cooling on the basis of the energy evolution laws. J Nat Gas Sci Eng 29:30–36. https://doi.org/10.1016/j.jngse.2015.12.041

  • Cha M, Alqahtani NB, Yin X, Kneafsey T J, Yao B, Wu YS (2017) Laboratory system for studying cryogenic thermal rock fracturing for well stimulation. J Pet Sci Eng 156:780–789. https://doi.org/10.1016/j.petrol.2017.06.062

  • Deng J, Zhu W, Qi Q, Tian W, Yue M (2015) Study on the steady and transient pressure characteristics of shale gas reservoirs. J Nat Gas Sci Eng 24:210–216. https://doi.org/10.1016/j.jngse.2015.03.016

  • Deng B, Yin G, Li M, Zhang D, Lu J, Liu Y, Chen J (2018) Feature of fractures induced by hydrofracturing treatment using water and L-CO2, as fracturing fluids in laboratory experiments. Fuel 226:35–46. https://doi.org/10.1016/j.fuel.2018.03.162

  • Hubbert MK, Willis DG (1957) Mechanics of hydraulic fracturing. AIME Trans 210:153–168

    Article  Google Scholar 

  • Haimson BC, Song I (1993) Laboratory study of borehole breakouts in Cordova Cream: a case of shear failure mechanism. Int J Rock Mech Min Sci Geomech Abstr 30(7):1047–1056. https://doi.org/10.1016/0148-9062(93)90070-t

  • Haimson BC, Song I (1998) Borehole breakouts in Berea sandstone: two porosity-dependent distinct shapes and mechanism of formation, SPE/ISRM rock mechanics in petroleum engineering, society of petroleum engineering, Richardson, TX pp 229–238. https://doi.org/10.2523/47249-ms

  • Haimson BC (2003) Borehole breakouts in Berea sandstone reveal a new fracture mechanism. Pure Appl Geophys 160(5–6):813–831. https://doi.org/10.1007/pl00012567

  • Haimson BC, Kovacich J (2003) Borehole instability in high-porosity Berea sandstone and factors affecting dimensions and shape of fracture-like breakouts. Eng Geol 69(3):219–231. https://doi.org/10.1016/s0013-7952(02)00283-1

  • Haimson BC, Lee H (2004) Borehole breakouts and compaction bands in two high-porosity sandstones. Int J Rock Mech Min Sci 41(2):287–301. https://doi.org/10.1016/j.ijrmms.2003.09.001

  • Haimson BC (2007) Micromechanisms of borehole instability leading to breakouts in rocks. Int J Rock Mech Min Sci 44(2):157–173. https://doi.org/10.1016/j.ijrmms.2006.06.002

  • Haimson B, Lin W, Oku H, Hung JH, Song SR (2010) Integrating borehole-breakout dimensions, strength criteria, and leak-off test results, to constrain the state of stress across the Chelungpu Fault, Taiwan. Tectonophysics 482(1–4):65–72. https://doi.org/10.1016/j.tecto.2009.05.016

  • Hou P, Gao F, Ju Y, Liang X, Zhang Z, Cheng H, Gao Y (2016) Experimental investigation on the failure and acoustic emission characteristics of shale, sandstone and coal under gas fracturing. J Nat Gas Sci Eng 35:211–223. https://doi.org/10.1016/j.jngse.2016.08.048

  • ISRM (2007) The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006. In: Ulusay, R., Hudson, J.A. (Eds.), Prepared by the Commission on Testing Methods. ISRM, Ankara. https://doi.org/10.2113/gseegeosci.15.1.47

  • Ito T (2008) Effect of pore pressure gradient on fracture initiation in fluid saturated porous media: Eng Fract Mech 75(7):1753–1762. https://doi.org/10.1016/j.engfracmech.2007.03.028

  • Lee H, Moon T, Haimson BC (2016) Borehole breakouts induced in Arkosic sandstones and a discrete element analysis. Rock Mech Rock Eng 49(4):1369–1388. https://doi.org/10.1007/s00603-015-0812-0

  • Li M, Yin G, Xu J, Li W, Song Z, Jiang C (2016) A novel true triaxial apparatus to study the geomechanical and fluid flow aspects of energy exploitations in geological formations. Rock Mech Rock Eng 49(12):4647–4659. https://doi.org/10.1007/s00603-016-1060-7

  • Muskhelishvili NI (1963) Some basic problems of the mathematical theory of elasticity. P. Noordho, Groningen.

  • Maleki S, Gholami R, Rasouli V, Moradzadeh A, Riabi RG, Sadaghzadeh F (2014) Comparison of different failure criteria in prediction of safe mud weigh window in drilling practice. Earth Sci Rev 136(3):36–58. https://doi.org/10.1016/j.earscirev.2014.05.010

  • Papamichos E, Tronvoll J, Skjærstein A, Unander TE (2010) Hole stability of Red Wildmoor sandstone under anisotropic stresses and sand production criterion. J Pet Sci Eng 72(1–2):78–92. https://doi.org/10.1016/j.petrol.2010.03.006

  • Qi D, Li L, Jiao Y (2018) The stress state around an elliptical borehole in anisotropy medium. J Petrol Sci Eng 166:313–323. https://doi.org/10.1016/j.petrol.2018.03.013

    Article  Google Scholar 

  • Shamir G, Zoback MD (1992) Stress orientation profile to 3.5 km depth near the San Andreas Fault at Cajon Pass, California. J Geophys Res Solid Earth 97(B4):5059–5080. https://doi.org/10.1029/91JB02959

  • Song I, Suh M, Won KS, Haimson BC (2001) A laboratory study of hydraulic fracturing breakdown pressure in tablerock sandstone. Geosci J 5(3):263–271. https://doi.org/10.1007/bf02910309

  • Shimizu H, Murata S, Ishida T (2011) The distinct element analysis for hydraulic fracturing in hard rock considering fluid viscosity and particle size distribution. Int J Rock Mech Min Sci Geomech Abstr 48(5):712–727. https://doi.org/10.1016/j.ijrmms.2011.04.013

  • Schwartzkopff AK, Melkoumian NS, Xu C (2017) Fracture mechanics approximation to predict the breakdown pressure using the theory of critical distances. Int J Rock Mech Min Sci Geomech Abstr 95:48–61. https://doi.org/10.1016/j.ijrmms.2017.03.006

  • Wanniarachchi WAM, Ranjith PG, Perera MSA, Rathnaweera TD, Zhang DC, Zhang C (2018) Investigation of effects of fracturing fluid on hydraulic fracturing and fracture permeability of reservoir rocks: an experimental study using water and foam fracturing. Eng Fract Mech 194:117–135. https://doi.org/10.1016/j.engfracmech.2018.03.009

  • Yin G, Li M, Wang JG, Xu J, Li W (2015) Mechanical behavior and permeability evolution of gas infiltrated coals during protective layer mining. Int J Rock Mech Min Sci 80: 292–301. https://doi.org/10.1016/j.ijrmms.2015.08.022

  • Zoback MD, Rummel F, Jung R (1977) Laboratory hydraulic fracturing experiments in intact and pre-fractured rock. Int J Rock Mech Min Sci Geomech Abstr 14(2):49-58. https://doi.org/10.1016/0148-9062(77)90846-4

  • Zoback MD, Barton CA, Brudy M, Castillo DA, Finkbeiner T, Grollimund BR, Moos DB, Peska P, Ward CD, Wiprut DJ (2003) Determination of stress orientation and magnitude in deep wells. Int J Rock Mech Min Sci 40(7–8):1049–1076. https://doi.org/10.1016/j.ijrmms.2003.07.001

  • Zhou F, Hussain F, Cinar Y (2013) Injecting pure N2, and CO2, to coal for enhanced coalbed methane: Experimental observations and numerical simulation. Int J Coal Geol s116–117(5):53–62. https://doi.org/10.1016/j.coal.2013.06.004

  • Zhang J (2013) Borehole stability analysis accounting for anisotropies in drilling to weak bedding planes. Int J Rock Mech Min Sci 60(2):160–170. https://doi.org/10.1016/j.ijrmms.2012.12.025

  • Zou Q, Lin B, Zheng C, Hao Z, Zhai C, Liu T, Liang J, Yan F, Yang W, Zhu C (2015) Novel integrated techniques of drilling–slotting–separation-sealing for enhanced coal bed methane recovery in underground coal mines. J Nat Gas Sci Eng 26:960–973. https://doi.org/10.1016/j.jngse.2015.07.033

  • Zhai C, Xu Y, Xiang X, Yu X, Zou Q, Zhong C (2015) A novel active prevention technology for borehole instability under the influence of mining activities. J Nat Gas Sci Eng 27:1585–1596. https://doi.org/10.1016/j.jngse.2015.10.024

  • Zhu Z, Li Y, Xie J, Liu B (2015) The effect of principal stress orientation on tunnel stability. Tunn Undergr Space Technol 49:279–286. https://doi.org/10.1016/j.tust.2015.05.009

    Article  Google Scholar 

  • Zhang X, Lu Y, Tang J, Zhou Z, Liao Y (2017) Experimental study on fracture initiation and propagation in shale using supercritical carbon dioxide fracturing. Fuel 190:370–378. https://doi.org/10.1016/j.fuel.2016.10.120

  • Zhang Y, Zhang J, Yuan B, Yin S (2018) In-situ stresses controlling hydraulic fracture propagation and fracture breakdown pressure. J Pet Sci Eng 164:164–173. https://doi.org/10.1016/j.petrol.2018.01.050

  • Zhong J, Ge Z, Lu Y, Zhou Z, Zheng J (2021) Prediction of fracture initiation pressure in multiple failure hydraulic fracturing modes: three-dimensional stress model considering borehole deformation. J Petrol Sci Eng 199:108264. https://doi.org/10.1016/j.petrol.2020.108264

    Article  Google Scholar 

Download references

Funding

This study was financially supported by the National Natural Science Foundation of China (51874053, 52108386, 51734009) and the Fundamental Research Funds for the Central Universities (2021QN1027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Liu.

Ethics declarations

Ethics approval

It is not relevant to my work.

Conflict of interest

The authors declare no competing interests.

Appendices

Appendix A

Derivation of stress field near elliptical boreholes

Basic assumptions

  1. 1.

    The target formation is isotropic, continuous, homogeneous, and elastic body. The sandstone which is more suitable for the above characteristics is selected in the experiment (Fig. 6).

  2. 2.

    The analytical solution of the stress field near the borehole under the action of far-field stress is simplified to solve the plane strain problem.

  3. 3.

    The body force of target formation is constant. For laboratory-scale tests, the mechanical effect of in situ stress and borehole hydraulic pressure on the specimen is far greater than that of the body force, so that the body force can be neglected.

Boundary conditions

As shown in Fig. 7, the stress boundary for elliptical borehole is as follows:

$${\sigma }_{1}=-{q}_{1}$$
(9)
$${\sigma }_{2}=-{q}_{2}$$
(10)

The real constants related to the far-field stress are

$$B=\frac{{\sigma }_{1}+{\sigma }_{2}}{4}=-\frac{{q}_{1}+{q}_{2}}{4}$$
(11)
$${B}^{^{\prime}}+i{C}^{^{\prime}}=-\frac{1}{2}\left({\sigma }_{1}-{\sigma }_{2}\right){e}^{-2i\alpha }=-\frac{1}{2}\left({q}_{2}-{q}_{1}\right){e}^{-2i\alpha }$$
(12)

where B, \({B}^{^{\prime}}\), and \({C}^{^{\prime}}\) are given real constants characterizing the remote stress field. B is proportional to the sum of the two principal stresses at infinity in the elastic body, and \({B}^{^{\prime}}+i{C}^{^{\prime}}\) is proportional to the difference of the two principal stresses at infinity in the elastic body (MPa). σ1 and σ2 are principal stresses parallel to the cross section of the borehole (MPa). It is helpful to consider the magnitudes of σ1 and σ2 at depths in terms of σH and σh (or σH and σV, σh, and σV). The sign convention for stresses in elasticity is utilized in which tensile stress is positive and compressive one is negative. q1 and q2 refer to the magnitudes of the in situ stress (MPa).

Due to the effect of fluid pressure in the borehole, taking the micro-unit at the boundary of the elliptical borehole as the objective to obtain the surface force as follows:

$$\overline{X }=-{q}_{3}\mathrm{cos}\left(N,x\right)=-{q}_{3}l$$
(13)
$$\overline{Y }=-{q}_{3}\mathrm{cos}\left(N,y\right)=-{q}_{3}m$$
(14)

where \(\overline{X }\) and \(\overline{Y }\) are surface forces of the micro-unit at the boundary of the elliptical borehole, that is the principal vector of the surface force between the base point A and any point B on the s-boundary (Fig. 18) (MPa). l and m are the direction cosine of the outward normal at the boundary. q3 is the magnitude of the fluid pressure (MPa).

We obtain the micro-unit’s surface force on the complex plane as follows:

$$\overline{X }+i\overline{Y }=-{q}_{3}\left(l+im\right)$$
(15)
$$\left(\overline{X }+i\overline{Y }\right)ds=-{q}_{3}\left(l+im\right)ds=-{q}_{3}\left(dy-idx\right)=i{q}_{3}\left(dx+idy\right)=i{q}_{3}dz$$
(16)

where ds is the length of the micro-unit at the boundary. dz are complex numbers.

Since the fluid pressure is equal at any point on the wall of the borehole, the surface force acting on the wall of the elliptical borehole becomes an equilibrium system, so the principal vector of the surface force is X = Y = 0.

Fig. 18
figure 18

Schematic diagram of the surface force action of the micro-unit of the borehole boundary

Theoretical derivation

For the orifice problem of various shapes, the region occupied by an object on one complex plane can be mapped to the interior or exterior of the central unit circle on another complex plane by conformal mapping. Following Muskhelishvili’s writings, introduce the following mapping function to simplify the geometry of the elliptical borehole as follows:

$$Z=\omega \left(\xi \right)=R\left(\frac{1}{\xi }+m\xi \right)$$
(17)
$$R=\frac{a+b}{2}$$
(18)
$$m=\frac{a-b}{a+b}$$
(19)
$$\xi =\rho \left(\cos\theta +i\sin\theta \right)$$
(20)

Equation (17) shows that the point z on the complex plane Z occupied by an ellipse is mapped to the interior of the central unit circle on complex plane ξ.

Where a and b are the semi-axes of the ellipse and 0 ≤ m ≤ 1. When m = 0, the ellipse becomes a circle, and in the limit m = 1, it becomes a crack. The mapping function transforms the exterior region of an ellipse into the interior region of a unit circle. θ is measured counterclockwise from x-axis direction and varies from 0 to 360°. This angle indicates the orientation of the stresses around the wellbore circumference. ρ is the distance between the point inside the unit circle and the center of the circle.

On the elliptical borehole wall, ρ = 1 for the unit circle, so Eqs. (20) and (17) are:

$$\xi =\sigma =\cos\theta +i\sin\theta$$
(21)
$$\omega \left(\sigma \right)=R\left(\frac{1}{\sigma }+m\sigma \right)$$
(22)

where σ is the point at which the elliptical boundary on the complex plane Z is mapped to the boundary of the central unit circle on the ξ-plane.

In the complex function solution, the notation f0 is introduced for the convenience of calculation. The expression of f0 is as follows:

$$\begin{aligned}{f}_{0}\text{=}&i\int \left(\overline{X }+i\overline{Y }\right)ds-\frac{X+iY}{2\pi }\mathrm{ln}\sigma -\frac{1+\mu }{8\pi }\left(X-iY\right)\frac{\omega \left(\sigma \right)}{\overline{{\omega }^{^{\prime}}\left(\sigma \right)}}\sigma \\&-2B\omega \left(\sigma \right)-\left({B}^{^{\prime}}-i{C}^{^{\prime}}\right)\stackrel{-}{\omega \left(\sigma \right)}\end{aligned}$$
(23)

Incorporating Eqs. (12), (16), and (22) into Eq. (23), we have the following:

$$\begin{aligned}{f}_{0}\text{=}&-{q}_{3}R\left(\frac{1}{\sigma }+m\sigma \right)+\frac{{q}_{1}+{q}_{2}}{2}R\left(\frac{1}{\sigma }+m\sigma \right)\\&+\frac{1}{2}\left({q}_{2}-{q}_{1}\right)R\left(\sigma +\frac{m}{\sigma }\right){e}^{2i\alpha }\end{aligned}$$
(24)

f0 is related to the single valued analytic functions φ0(ξ) inside the unit circle as follows:

$${\varphi }_{0}\left(\xi \right)\text{=}\frac{1}{2\pi i}{\int }_{\sigma }\frac{{f}_{0}}{\sigma -\xi }d\sigma$$
(25)

Incorporating Eq. (24) into Eq. (25) and using the Cauchy integral principle, we have the following:

$$\begin{array}{c}{\varphi }_{0}\left(\xi \right)\text{=}\frac{1}{2\pi i}{\int }_{\sigma }\left[-{q}_{3}R\left(\frac{1}{\sigma }+m\sigma \right)+\frac{{q}_{1}+{q}_{2}}{2}R\left(\frac{1}{\sigma }+m\sigma \right)+\frac{1}{2}\left({q}_{2}-{q}_{1}\right)R\left(\sigma +\frac{m}{\sigma }\right){e}^{2i\alpha }\right]\frac{d\sigma }{\sigma -\xi }\\ =-{q}_{3}Rm\xi +\frac{1}{2}\left({q}_{1}+{q}_{2}\right)Rm\xi +\frac{1}{2}\left({q}_{2}-{q}_{1}\right)R\xi {e}^{2i\alpha }\end{array}$$
(26)

\(\overline{{f }_{0}}\) and \({\varphi }_{0}^{^{\prime}}\left(\xi \right)\) are related to the single valued analytic functions ψ0(ξ) inside the unit circle as follows:

$${\psi }_{0}\left(\xi \right)\text{=}\frac{1}{2\pi i}{\int }_{\sigma }\frac{\overline{{f }_{0}}}{\sigma -\xi }d\sigma -\xi \frac{{\xi }^{2}+m}{m{\xi }^{2}-1}{\varphi }_{0}^{^{\prime}}\left(\xi \right)$$
(27)

In the same way, we have the following:

$$\begin{aligned}{\psi }_{0}\left(\xi \right)=&R\xi \left[\left(\frac{{q}_{1}+{q}_{2}}{2}-{q}_{3}\right)\left(1-m\frac{{\xi }^{2}+m}{m{\xi }^{2}-1}\right)\right.\\&\left.+\frac{{q}_{2}-{q}_{1}}{2}\left(m{e}^{-2i\alpha }-\frac{{\xi }^{2}+m}{m{\xi }^{2}-1}{e}^{2i\alpha }\right)\right]\end{aligned}$$
(28)

where \(\overline{{f }_{0}}\) is the conjugate complex function of the f0.

The expressions for the complex functions φ(ξ) and ψ(ξ) characterizing the airy stress function are as follows:

$$\varphi \left(\xi \right)=\frac{1+\mu }{8\pi }\left(X+iY\right)\mathrm{ln}\xi +B\omega \left(\xi \right)+{\varphi }_{0}\left(\xi \right)$$
(29)
$$\psi \left(\xi \right)=-\frac{3-\mu }{8\pi }\left(X-iY\right)\mathrm{ln}\xi +\left({B}^{^{\prime}}+i{C}^{^{\prime}}\right)\omega \left(\xi \right)+{\psi }_{0}\left(\xi \right)$$
(30)

where φ(ξ) and ψ(ξ) are the two analytical functions represented by the complex function ξ. They are used to characterize the stress function in the plane problem where the body force is constant.

Incorporating Eqs. (11), (17), and (26) into Eq. (29), we have the following:

$$\varphi \left(\xi \right)=Rm\xi \left(\frac{{q}_{1}+{q}_{2}}{4}-{q}_{3}\right)+\frac{{q}_{2}-{q}_{1}}{2}R\xi {e}^{2i\alpha }-\frac{{q}_{1}+{q}_{2}}{4}R\frac{1}{\xi }$$
(31)

Incorporating Eqs. (12), (17), and (28) into Eq. (30), we have the following:

$$\begin{aligned}\psi \left(\xi \right)=&R\xi \left[\left(\frac{{q}_{1}+{q}_{2}}{2}-{q}_{3}\right)\left(1-m\frac{{\xi }^{2}+m}{m{\xi }^{2}-1}\right)-\frac{{q}_{2}-{q}_{1}}{2}\frac{{\xi }^{2}+m}{m{\xi }^{2}-1}{e}^{2i\alpha }\right]\\&-\frac{{q}_{2}-{q}_{1}}{2}{e}^{-2i\alpha }\frac{R}{\xi }\end{aligned}$$
(32)

The relationship between φ(ξ) and ψ(ξ) and the stress field in the vicinity of the elliptical borehole is as follows:

$$\Phi \left(\xi \right)=\frac{{\varphi }^{^{\prime}}\left(\xi \right)}{{\omega }^{^{\prime}}\left(\xi \right)}$$
(33)
$$\Psi \left(\xi \right)=\frac{{\psi }^{^{\prime}}\left(\xi \right)}{{\omega }^{^{\prime}}\left(\xi \right)}$$
(34)
$${\sigma }_{\rho \rho }+{\sigma }_{\theta \theta }=4\mathrm{Re}\Phi \left(\xi \right)$$
(35)
$${\sigma }_{\theta \theta }-{\sigma }_{\rho \rho }+2i{\tau }_{\rho \theta }=\frac{2{\xi }^{2}}{{\rho }^{2}\overline{{\omega }^{^{\prime}}\left(\xi \right)}}\left[\stackrel{-}{\omega \left(\xi \right)}{\Phi }^{^{\prime}}\left(\xi \right)+{\omega }^{^{\prime}}\left(\xi \right)\Psi \left(\xi \right)\right]$$
(36)

where σρρ is the radial stress (MPa), σθθ is the circumferential stress (MPa), τρθ is the tangential shear stress (MPa). Φ(ξ) and Ψ(ξ) are the two analytical functions represented by the complex function ξ. Re refers to the real part of the complex function Φ(ξ).

Incorporating Eqs. (31) and (32) into Eqs. (33), (34), (35), and (36), we have the following:

$$\begin{array}{l}{\sigma }_{\theta \theta }=\frac{1}{2\left({m}^{2}-2m{\rho }^{-2}\cos 2\theta +{\rho }^{-4}\right)}\left\{\begin{array}{l}\left(m\cos 2\theta -{\rho }^{-2}\right)\frac{{\rho }^{-2}\left({q}_{1}+{q}_{2}\right)\left({\rho }^{-4}-{m}^{2}\cos 4\theta \right)}{{m}^{2}-2m{\rho }^{-2}\cos 2\theta +{\rho }^{-4}}-\frac{{m}^{3}{\rho }^{-2}\left({q}_{1}+{q}_{2}\right)\sin 4\theta \sin 2\theta }{{m}^{2}-2m{\rho }^{-2}\cos 2\theta +{\rho }^{-4}}\\ -4{\rho }^{-2}\left(m\cos 2\theta -{\rho }^{-2}\right)\frac{\left({\rho }^{-2}\cos 2\theta +m\cos 4\theta \right)\left(GE+HF\right)+\left(HE-GF\right)\left(m\sin 4\theta +{\rho }^{-2}\sin 2\theta \right)}{{E}^{2}+{F}^{2}}\\ +4m \sin 2\theta \frac{\left[\left({\rho }^{-4}\cos 2\theta +m{\rho }^{-2}\cos 4\theta \right)\left(HE-GF\right)-\left(m{\rho }^{-2}\sin 4\theta +{\rho }^{-4}\sin 2\theta \right)\left(GE+HF\right)\right]}{{E}^{2}+{F}^{2}}\\ +2\left(m\cos 2\theta -{\rho }^{-2}\right)\left(\frac{{q}_{1}+{q}_{2}}{2}-{q}_{3}\right)+{\rho }^{-2}\left({q}_{2}-{q}_{1}\right)\left[\left(m\cos 2\theta -{\rho }^{-2}\right)\cos \left(2\alpha +2\theta \right)+m\sin 2\theta \sin \left(2\alpha +2\theta \right)\right]\\ -2\frac{\left[N\left(m\cos 2\theta -{\rho }^{-2}\right)-\frac{{q}_{2}-{q}_{1}}{2}m\sin 2\theta \sin 2\alpha \right]\left(LJ+MK\right)-\left(MJ-LK\right)\left[\frac{{q}_{2}-{q}_{1}}{2}\sin 2\alpha \left(m\cos 2\theta -{\rho }^{-2}\right)+Nm\sin 2\theta \right]}{{J}^{2}+{K}^{2}}\end{array}\right\}\\ +2\frac{\left[m\left(\frac{{q}_{1}+{q}_{2}}{4}-{q}_{3}\right)+\frac{{q}_{2}-{q}_{1}}{2}\cos 2\alpha +\frac{{q}_{1}+{q}_{2}}{4{\rho }^{2}}\cos 2\theta \right]\left(m-{\rho }^{-2}\cos 2\theta \right)+{\rho }^{-2}\left(\frac{{q}_{2}-{q}_{1}}{2}\sin 2\alpha -\frac{{q}_{1}+{q}_{2}}{4{\rho }^{2}}\sin 2\theta \right)\sin 2\theta }{{m}^{2}-2m{\rho }^{-2}\cos 2\theta +{\rho }^{-4}}\end{array}$$
(37)
$$\begin{array}{l}{\sigma }_{\rho \rho }=2\frac{\left[m\left(\frac{{q}_{1}+{q}_{2}}{4}-{q}_{3}\right)+\frac{{q}_{2}-{q}_{1}}{2}\cos 2\alpha +\frac{{q}_{1}+{q}_{2}}{4{\rho }^{2}}\cos 2\theta \right]\left(m-{\rho }^{-2}\cos 2\theta \right)+{\rho }^{-2}\left(\frac{{q}_{2}-{q}_{1}}{2}\sin 2\alpha -\frac{{q}_{1}+{q}_{2}}{4{\rho }^{2}}\sin 2\theta \right)\sin 2\theta }{{m}^{2}-2m{\rho }^{-2}\cos 2\theta +{\rho }^{-4}}\\ -\frac{1}{2\left({m}^{2}-2m{\rho }^{-2}\cos 2\theta +{\rho }^{-4}\right)}\left\{\begin{array}{l}\left(m\cos 2\theta -{\rho }^{-2}\right)\frac{{\rho }^{-2}\left({q}_{1}+{q}_{2}\right)\left({\rho }^{-4}-{m}^{2}\cos 4\theta \right)}{{m}^{2}-2m{\rho }^{-2}\cos 2\theta +{\rho }^{-4}}-\frac{{m}^{3}{\rho }^{-2}\left({q}_{1}+{q}_{2}\right)\sin 4\theta \sin 2\theta }{{m}^{2}-2m{\rho }^{-2}\cos 2\theta +{\rho }^{-4}}\\ -4{\rho }^{-2}\left(m\cos 2\theta -{\rho }^{-2}\right)\frac{\left({\rho }^{-2}\cos 2\theta +m\cos 4\theta \right)\left(GE+HF\right)+\left(HE-GF\right)\left(m\sin 4\theta +{\rho }^{-2}\sin 2\theta \right)}{{E}^{2}+{F}^{2}}\\ +4m \sin 2\theta \frac{\left[\left({\rho }^{-4}\cos 2\theta +m{\rho }^{-2}\cos 4\theta \right)\left(HE-GF\right)-\left(m{\rho }^{-2}\sin 4\theta +{\rho }^{-4}\sin 2\theta \right)\left(GE+HF\right)\right]}{{E}^{2}+{F}^{2}}\\ +2\left(m\cos 2\theta -{\rho }^{-2}\right)\left(\frac{{q}_{1}+{q}_{2}}{2}-{q}_{3}\right)+{\rho }^{-2}\left({q}_{2}-{q}_{1}\right)\left[\left(m\cos 2\theta -{\rho }^{-2}\right)\cos \left(2\alpha +2\theta \right)+m\sin 2\theta \sin \left(2\alpha +2\theta \right)\right]\\ -2\frac{\left[N\left(m\cos 2\theta -{\rho }^{-2}\right)-\frac{{q}_{2}-{q}_{1}}{2}m\sin 2\theta \sin 2\alpha \right]\left(LJ+MK\right)-\left(MJ-LK\right)\left[\frac{{q}_{2}-{q}_{1}}{2}\sin 2\alpha \left(m\cos 2\theta -{\rho }^{-2}\right)+Nm\sin 2\theta \right]}{{J}^{2}+{K}^{2}}\end{array}\right\}\end{array}$$
(38)
$${\tau }_{\rho \theta }=\frac{1}{2\left({m}^{2}-2m{\rho }^{-2}\cos 2\theta +{\rho }^{-4}\right)}\left\{\begin{array}{l}+\frac{\left({q}_{1}+{q}_{2}\right)\left({\rho }^{-4}-{m}^{2}\cos 4\theta \right){\rho }^{-2}m\sin 2\theta }{{m}^{2}-2m{\rho }^{-2}\cos 2\theta +{\rho }^{-4}}+\frac{\left({q}_{1}+{q}_{2}\right)\left(m\cos 2\theta -{\rho }^{-2}\right){m}^{2}{\rho }^{-2}\sin 4\theta }{{m}^{2}-2m{\rho }^{-2}\cos 2\theta +{\rho }^{-4}}\\ -4m \sin 2\theta \frac{\left({\rho }^{-4}\cos 2\theta +m{\rho }^{-2}\cos 4\theta \right)\left(GE+HF\right)+\left(HE-GF\right)\left(m{\rho }^{-2}\sin 4\theta +{\rho }^{-4}\sin 2\theta \right)}{{E}^{2}+{F}^{2}}\\ -4\left(m\cos 2\theta -{\rho }^{-2}\right)\frac{\left[\left({\rho }^{-4}\cos 2\theta +m{\rho }^{-2}\cos 4\theta \right)\left(HE-GF\right)-\left(m{\rho }^{-2}\sin 4\theta +{\rho }^{-4}\sin 2\theta \right)\left(GE+HF\right)\right]}{{E}^{2}+{F}^{2}}\\ +2m\left(\frac{{q}_{1}+{q}_{2}}{2}-{q}_{3}\right)\sin 2\theta +2\frac{{q}_{2}-{q}_{1}}{2}{\rho }^{-2}m\sin 2\theta cos\left(2\alpha +2\theta \right)-2\left(m\cos 2\theta -{\rho }^{-2}\right)\frac{{q}_{2}-{q}_{1}}{2}{\rho }^{-2}\sin\left[\left(2\alpha +2\theta \right)\right]\\ -2\frac{\left[\frac{{q}_{2}-{q}_{1}}{2}\left(m\cos 2\theta -{\rho }^{-2}\right)\sin 2\alpha +Nm\sin 2\theta \right]\left(LJ+MK\right)+\left(MJ-LK\right)\left[N\left(m\cos 2\theta -{\rho }^{-2}\right)-\frac{{q}_{2}-{q}_{1}}{2}m\sin 2\theta \sin 2\alpha \right]}{{J}^{2}+{K}^{2}}\end{array}\right\}$$
(39)

where

$$\begin{array}{l}E={m}^{2}-2m{\rho }^{-2}\cos 2\theta +{\rho }^{-4}\cos4\theta ,F=2m{\rho }^{-2}\sin 2\theta -{\rho }^{-4}\sin 4\theta ,G=m\left(\frac{{q}_{1}+{q}_{2}}{4}-{q}_{3}\right)+\frac{{q}_{2}-{q}_{1}}{2}\cos 2\alpha +\frac{{q}_{1}+{q}_{2}}{4}{\rho }^{-2}\cos 2\theta \\ H=\frac{{q}_{2}-{q}_{1}}{2}\sin 2\alpha -\frac{{q}_{1}+{q}_{2}}{4}{\rho }^{-2}\sin 2\theta ,J={m}^{2}{\rho }^{4}\cos 4\theta -2m{\rho }^{2}\cos 2\theta +1,K={m}^{2}{\rho }^{4}\sin 4\theta -2m{\rho }^{2}\sin 2\theta \\ L=m{\rho }^{4}\cos 4\theta -\left({m}^{2}+3\right){\rho }^{2}\cos 2\theta -m,M=m{\rho }^{4}\sin 4\theta -\left({m}^{2}+3\right){\rho }^{2}\sin 2\theta ,N=m\left(\frac{{q}_{1}+{q}_{2}}{2}-{q}_{3}\right)+\frac{{q}_{2}-{q}_{1}}{2}\cos 2\alpha \end{array}$$

We obtain the analytical solutions of the stress field near the elliptical borehole under the action of far-field stress (–q1 and –q2) and internal borehole pressure (–q3). According to Eqs. (37), (38), and (39), the radial stress (σρρ), circumferential (or tangential or hoop) stress (σθθ), and tangential shear stress (τ) are functions of angles θ and α, in situ stress (–q1 and –q2), internal borehole pressure (–q3) and shape parameter m. Therefore, any change in abovementioned parameters will affect the σρρ, σθθ and τ.

However, the most important for us is the stress at the edge of the elliptical borehole, that is, ρ = 1. The above equations corresponding to the borehole wall (where ρ = 1) are simplified to

$$\left\{\begin{array}{l}{\sigma }_{\rho }=-{q}_{3}\\ {\sigma }_{\theta }=\frac{\left({q}_{1}+{q}_{2}\right)\left({m}^{2}-1\right)+2\left({q}_{2}-{q}_{1}\right)\left[m\cos 2\alpha -\cos 2\left(\alpha +\theta \right)\right]-4m{q}_{3}\left(m-\cos 2\theta \right)}{{\left(m-\cos 2\theta \right)}^{2}\text{+}{\sin }^{2}2\theta }+{q}_{3}\\ {\tau }_{\rho \theta }=0\end{array}\right.$$
(40)

Degenerate to the circular borehole/roadway

It is well known that analytical solutions for stress fields near circular boreholes/roadways are widely used in industrial fields, such as coal mines, petroleum, natural gas, and tunnels. Substituting m = 0, q3 = 0 and α = π/2 into the Eqs. (31), (37) and (38) can degenerate into the classical analytical solution of the stress field near the circular borehole/roadway as follows:

$$\begin{aligned}{\sigma }_{\rho \rho }=&\frac{1}{2}\left[\left(-{q}_{1}\right)+\left(-{q}_{2}\right)\right]\left(1-{\rho }^{2}\right)+\frac{1}{2}\\&\left[\left(-{q}_{2}\right)-\left(-{q}_{1}\right)\right]\left(1-4{\rho }^{2}+3{\rho }^{4}\right)\cos 2\theta\end{aligned}$$
(41)
$$\begin{aligned}{\sigma }_{\theta \theta }=&\frac{1}{2}\left[\left(-{q}_{1}\right)+\left(-{q}_{2}\right)\right]\left(1+{\rho }^{2}\right)-\frac{1}{2}\left[\left(-{q}_{2}\right)-\left(-{q}_{1}\right)\right]\\&\left(1+3{\rho }^{4}\right)\cos 2\theta\end{aligned}$$
(42)
$${\tau }_{\rho \theta }=\frac{1}{2}\left[\left(-{q}_{2}\right)-\left(-{q}_{1}\right)\right]\left(1+2{\rho }^{2}-3{\rho }^{4}\right)\sin 2\theta$$
(43)

where \(\rho =\frac{{R}_{0}}{r}\), R0 is the radius of the borehole, r is distance from the center of the hole.

If the relevant parameters are known, the maximum circumferential stress of the elliptical borehole can be obtained by employing Eqs. (37), (38), and (39). According to the maximum tensile stress criterion, the variation trend of the breakdown pressure of the elliptical borehole with different shapes can be predicted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Zhang, D., Zhao, H. et al. Experimental study on hydraulic fracturing properties of elliptical boreholes. Bull Eng Geol Environ 81, 18 (2022). https://doi.org/10.1007/s10064-021-02531-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10064-021-02531-9

Keywords

Navigation