Skip to main content
Log in

A new classification approach for prediction of flyrock throw in surface mines

  • Original Article
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

A novel classification approach was proposed for prediction of flyrock throw distance based on the site measurements performed in a sandstone quarry. The classification approach was created by using multiple discriminant analysis (MDA) technique. The input parameters of discriminant analysis are blast design parameters and a rock mass parameter. The grouping stage of classification was performed considering a well-known blast regulation for flyrock. Additionally, multiple regression analysis technique applied to blast data to create a flyrock prediction equation. By this way, the capability and differences of the classification approach were investigated. Model validation was performed on the test blasts. MDA model successfully estimated the flyrock throw distance. Unlike the classical prediction models, the MDA model predicts severity of flyrock throws instead of a numerical value. MDA model can be easily practiced by the created territorial map. The model does not require any specific software or training for usage and suitable for practical applications at mines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adhikari GR (1999) Studies on flyrock at limestone quarries. Rock Mech Rock Eng 32:291–301. doi:10.1007/s006030050049

    Article  Google Scholar 

  • Aler J, Du Mouza J, Arnould M (1996) Evaluation of blast fragmentation efficiency and its prediction by multivariate analysis procedures. Int J Rock Mech Min Sci Geomech Abstr 33:189–196. doi:10.1016/0148-9062(95)00055-0

    Article  Google Scholar 

  • Alipour A, Ashtiani M (2011) Fuzzy modeling approaches for the prediction of maximum charge per delay in surface mining. Int J Rock Mech Min Sci 48:305–310. doi:10.1016/j.ijrmms.2010.11.010

    Article  Google Scholar 

  • Amini H, Gholami R, Monjezi M, Torabi SR, Zadhesh J (2012) Evaluation of flyrock phenomenon due to blasting operation by support vector machine. Neural Comput Applic 21:2077–2085. doi:10.1007/s00521-011-0631-5

    Article  Google Scholar 

  • Armstrong JS, Collopy F (1992) Error measures for generalizing about forecasting methods: empirical comparisons. Int J Forecast 8:69–80. doi:10.1016/0169-2070(92)90008-W

    Article  Google Scholar 

  • Ash RL (1963) The mechanics of rock breakage (part 2) – standards for blast design. Pit Quarry 56:118–122

    Google Scholar 

  • Bajpayee TS, Rehak TR, Mowrey GL, Ingram DK (2004) Blasting injuries in surface mining with emphasis on flyrock and blast area security. J Saf Res 35:47–57. doi:10.1016/j.jsr.2003.07.003

    Article  Google Scholar 

  • Bhandari S (1997) Engineering rock blasting operations. A. A, Balkema

    Google Scholar 

  • Castro JT, Liste AV, Gonzales AS (1998) Blasting index for exploitation of aggregates. In: Proceedings of the 7th Mine Planning and Equipment Selection Calgary, pp. 165–168

  • Cohen J, Cohen P, West SG, Aiken LS (2003) Applied multiple regression/correlation analysis for the behavioral sciences. Lawrence Erlbaum Associates Publishers, London

    Google Scholar 

  • Dowdy S, Wearden S, Chilko D (2004) Statistics for research − third edition. John Wiley & Sons Inc., Hoboken

    Google Scholar 

  • Eltschlager KK (2004) Blasting applications for GPS. Proceedings of the Advanced Integration of Geospatial Technologies in Mining and Reclamation Atlanta, Georgia, In, pp 1–11

    Google Scholar 

  • Garson GD (2012) Discriminant function analysis −statistical associates blue book series. Statistical Associates Publishing, Asheboro

    Google Scholar 

  • Garson GD (2014) Multiple regression − statistical associates blue book series. Statistical Associates Publishing, Asheboro

    Google Scholar 

  • Ghasemi E, Sari M, Ataei M (2012) Development of an empirical model for predicting the effects of controllable blasting parameters on flyrock distance in surface mines. Int J Rock Mech Min Sci 52:163–170. doi:10.1016/j.ijrmms.2012.03.011

    Article  Google Scholar 

  • Ghasemi E, Ataei M, Hashemolhosseini H (2013) Development of a fuzzy model for predicting ground vibration caused by rock blasting in surface mining. J Vib Control 19:755–770. doi:10.1177/1077546312437002

    Article  Google Scholar 

  • Giraudi A, Cardu M, Kecojevic V (2009) An assessment of blasting vibrations: a case study on quarry operation. Am J Environ Sci 5:467–473. doi:10.3844/ajessp.2009.467.473

    Article  Google Scholar 

  • Hillier DE, Holywell PD, Jeffries RM, Scott IMB (1999) Limiting the instance of fly-rock from quarry operations, research report. WS Atkins Consultants Ltd., Warrington

    Google Scholar 

  • Ho R (2014) Handbook of univariate and multivariate data analysis with IBM SPSS − second edition. CRC Press, Boca Raton

    Google Scholar 

  • Huberty CJ, Olejnik S (2006) Applied MANOVA and discriminant analysis −, second edn. John Wiley & Sons, New Jersey

    Book  Google Scholar 

  • Hudaverdi T (2012) Application of multivariate analysis for prediction of blast-induced ground vibrations. Soil Dyn Earthq Eng 43:300–308. doi:10.1016/j.soildyn.2012.08.002

    Article  Google Scholar 

  • Hudaverdi T, Kuzu C, Fisne A (2012) Investigation of the blast fragmentation using the mean fragment size and fragmentation index. Int J Rock Mech Min Sci 56:136–145. doi:10.1016/j.ijrmms.2012.07.028

    Article  Google Scholar 

  • Hustrulid WA (1999) Blasting principles for open pit mining−Vol 1 general design concepts. A. A, Balkema

    Google Scholar 

  • IBM SPSS Statistics Base 20 (2011) IBM Corp., Armonk

  • Kahriman A (2004) Analysis of parameters of ground vibration produced from bench blasting at a limestone quarry. Soil Dyn Earthq Eng 24:887–892. doi:10.1016/j.soildyn.2004.06.018

    Article  Google Scholar 

  • Khandelwal M (2010) Evaluation and prediction of blast-induced ground vibration using support vector machine. Int J Rock Mech Min Sci 47:509–516. doi:10.1016/j.ijrmms.2010.01.007

    Article  Google Scholar 

  • Konya CJ, Walter EJ (1990) Surface blast design. Prentice Hall Int, USA

    Google Scholar 

  • Kuznetsov VM (1973) Mean diameter of fragments formed by blasting rock. Sov Min Sci 9:144–148. doi:10.1007/bf02506177

    Article  Google Scholar 

  • Landau S, Everitt BS (2004) A handbook of statistical analyses using SPSS. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  • Latham JP, Lu P (1999) Development of an assessment system for the blastability of rock masses. Int J Rock Mech Min Sci Geomech Abstr 36:41–55. doi:10.1016/S0148-9062(98)00175-2

    Article  Google Scholar 

  • Little TN (2007) Flyrock Risk. In: Proceedings of the EXPLO 2007 Conference Wollongong, Australia. pp. 35–43

  • Lundborg N, Persson PA, Ladegaard-Pedersen A, Holmberg R (1975) Keeping the lid on flyrock in opencast blasting. Eng Min J 95–100

  • Makridakis S, Hibon M (1995) Evaluating accuracy (or error) measures. INSEAD Working Paper Series. No. 18/TM:1–31. https://sites.insead.edu/facultyresearch/research/doc.cfm?did=46875

  • McLachlan GJ (2004) Discriminant analysis and statistical pattern recognition. John Wiley & Sons, New Jersey

    Google Scholar 

  • McNeill FM, Thro E (1994) Fuzzy logic: a practical approach. AP Professional, Cambridge

    Google Scholar 

  • Mishra AK, Mallick DK (2012) Analysis of blasting related accidents with emphasis on flyrock and its mitigation in surface mines. In: Proceedings of the 10th International Symposium on Rock Fragmentation by Blasting New Delhi, India. pp. 555–563

  • Monjezi M, Bahrami A, Yazdian Varjani A (2010) Simultaneous prediction of fragmentation and flyrock in blasting operation using artificial neural networks. Int J Rock Mech Min Sci 47:476–480. doi:10.1016/j.ijrmms.2009.09.008

    Article  Google Scholar 

  • Monjezi M, Mehrdanesh A, Malek A, Khandelwal M (2012) Evaluation of effect of blast design parameters on flyrock using artificial neural networks. Neural Comput & Applic 23:349–356. doi:10.1007/s00521-012-0917-2

    Article  Google Scholar 

  • Olofsson SO (1990) Applied explosives technology for construction and mining. Applex, Sweden

    Google Scholar 

  • Ouchterlony F (2003) Influence of blasting on the size distribution and properties of muckpile fragments, a state-of-the-art review, MinFo project report P2000–10: energy optimisation in comminution. Lulea University of Technology, Sweden, Swebrec

    Google Scholar 

  • Persson PA, Holmberg R, Lee J (1994) Rock blasting and explosives engineering. CRC Press, Boca Raton

    Google Scholar 

  • Raina AK, Chakraborty AK, Choudhury PB, Sinha A (2011) Flyrock danger zone demarcation in opencast mines: a risk based approach. Bull Eng Geol Environ 70:163–172. doi:10.1007/s10064-010-0298-7

    Article  Google Scholar 

  • Raina AK, Murthy VMSR, Soni AK (2014) Flyrock in bench blasting: a comprehensive review. Bull Eng Geol Environ 73:1199–1209. doi:10.1007/s10064-014-0588-6

    Article  Google Scholar 

  • Raina AK, Murthy VMSR, Soni AK (2015) Flyrock in surface mine blasting: understanding the basics to develop a predictive regime. Curr Sci 108:660–665

    Google Scholar 

  • Rezaei M, Monjezi M, Yazdian Varjani A (2011) Development of a fuzzy model to predict flyrock in surface mining. Saf Sci 49:298–305. doi:10.1016/j.ssci.2010.09.004

    Article  Google Scholar 

  • Richards AB, More AJ (2004) Flyrock Control – By Chance or Design. In: Proceedings of the 30th Annual Conference on Explosives and Blasting Technique New Orleans, Louisiana. pp.1–13

  • Roth J (1979) A model for the determination of flyrock range as a function of shot conditions, final report contract no. J03872A2. Management Science Associates, Los Altos

    Google Scholar 

  • Saadat M, Khandelwal M, Monjezi M (2014) An ANN-based approach to predict blast-induced ground vibration of Gol-E-Gohar iron ore mine, Iran. J Rock Mech Geotech Eng 6:67–76. doi:10.1016/j.jrmge.2013.11.001

    Article  Google Scholar 

  • Schneider L (1997) Back to the basics, flyrock (part 2: prevention). The Journal of explosives engineering 14:1−14 quarry blasting. Appl Acoust 71:1169–1176. doi:10.1016/j.apacoust.2010.07.008

    Google Scholar 

  • Segarra P, Domingo JF, López LM, Sanchidrián JA, Ortega MF (2010) Prediction of near field overpressure from quarry blasting. Appl Acoust 71:1169–1176. doi:10.1016/j.apacoust.2010.07.008

    Article  Google Scholar 

  • Singh TN, Dontha LK, Bhardwaj V (2008) Study into blast vibration and frequency using ANFIS and MVRA. Min Technol 117:116–121. doi:10.1179/037178409X405741

    Article  Google Scholar 

  • Tabachnick BG, Fidell LS (2013) Using multivariate statistics, Sixth edn. Pearson, New Jersey

    Google Scholar 

  • Tugrul A, Undul O (2006) Engineering geological characteristics of Istanbul greywackes. In: Proceedings of the 10th International Association for Engineering Geology and the Environment (IAEG) Congress Nottingham, United Kingdom. Paper no. 395

  • US Code of Federal Regulations-Title 30 Mineral Resources (2016) Office of the Federal register national archives and records administration. U.S. Government Publishing Office, Washington, DC

    Google Scholar 

  • Yu TR, Vongpaisal S (1996) New blast damage criteria for underground blasting. CIM Bull 89:139–145

    Google Scholar 

  • Yugo N, Shin W (2015) Analysis of blasting damage in adjacent mining excavations. J Rock Mech Geotech Eng 7:282–290. doi:10.1016/j.jrmge.2014.12.005

    Article  Google Scholar 

Download references

Acknowledgments

This study was partly supported by the Research Fund of the Istanbul Technical University (project name: ‘The effects of the variations in blast design and initiation systems on blast induced ground vibrations. No: 38511). The authors are grateful to the Research Fund of the Istanbul Technical University for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Turker Hudaverdi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hudaverdi, T., Akyildiz, O. A new classification approach for prediction of flyrock throw in surface mines. Bull Eng Geol Environ 78, 177–187 (2019). https://doi.org/10.1007/s10064-017-1100-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-017-1100-x

Keywords

Navigation