Skip to main content

Advertisement

Log in

GIS-based landslide susceptibility mapping with logistic regression, analytical hierarchy process, and combined fuzzy and support vector machine methods: a case study from Wolong Giant Panda Natural Reserve, China

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Landslides, as one of the most destructive natural phenomena, distribute extensively in Wolong Giant Panda Natural Reserve and cause damage to both humans and endangered species. Therefore, landslide susceptibility zonation (LSZ) mapping is necessary for government agencies and decision makers to select suitable locations for giant pandas. The main purpose of this study is to produce landside susceptibility maps using logistic regression (LR), analytical hierarchy process (AHP), and a combined fuzzy and support vector machine (F-SVM) hybrid method based on geographic information systems (GIS). A total of 1773 landslide scarps larger than one cell (25 × 25 m2) were selected in the landslide inventory mapping, 70 % of which were selected at random to be used as test data, and the other 30 % were used as validation. Topographical, geological, and hydrographical data were collected, processed, and constructed into a spatial database. Nine conditioning factors were chosen as influencing factors related to landslide occurrence: slope degree, aspect, altitude, profile curvature, geology and lithology, distance from faults, distance from rivers, distance from roads, and normalized difference vegetation index (NDVI). Landslide susceptible areas were analyzed and mapped using the landslide occurrence factors by different methods. For conventional assessment, weights and rates of the affecting factors were assigned based on experience and knowledge of experts. In order to reduce the subjectivity, a combined fuzzy and SVM hybrid model was generated for LSZ in this paper. In this approach, the rates of each thematic layer were generated by the fuzzy similarity method, and weights were created by the SVM method. To confirm the practicality of the susceptibility map produced by this improved method, a comparison study with LR, AHP was assessed by means of their validation. The outcome indicated that the combined fuzzy and SVM method (accuracy is 85.73 %) is better than AHP (accuracy is 78.84 %), whereas it is relatively similar to LR (accuracy is 84.55 %). The susceptibility map based on combined the fuzzy and SVM approach also shows that 5.8 % of the study area is assigned as very highly susceptible areas, and 17.8 % of the study area is assigned as highly susceptible areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abe Shigeo (2010) Support vector machines for pattern classification. Springer, Berlin

    Book  Google Scholar 

  • Akgun A, Türk N (2010) Landslide susceptibility mapping for Ayvalik (Western Turkey) and its vicinity by muliti-criteria decision analysis. Environ Earth Sci 61:595–611

    Article  Google Scholar 

  • Akgun A, Dag S, Bulut F (2008) Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihood-frequency ratio and weighted linear combination models. Environ Geol 54(6):1127–1143

    Article  Google Scholar 

  • Akgun A, Kincal C, Pradhan B (2011) Application of remote sensing data and GIS for landslide risk assessment as an environmental threat to Izmir city (west turkey). Environ Monit Assess 184(9):5453–5470

    Article  Google Scholar 

  • Akgun A, Sezer EA, Nefeslioglu HA, Gokceoglu C, Pradhan B (2012) An easy-to use MATLAB program (MamLand) for the assessment of landslide susceptibility using a Mamdani fuzzy algorithm. Comput Geosci 38(1):23–34

    Article  Google Scholar 

  • Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Environ 58(1):21–44

    Article  Google Scholar 

  • Aleotti P, Baldelli P, Polloni G (1996) Landsliding and flooding event triggered by heavy rains in the Tanaro basin (Italy). Proc Int Congr Interpraevent 1:435–446

    Google Scholar 

  • Ali Yalcin (2008) GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations. Catena 72(1):1–12. doi:10.1016/j.catena.2007.01.003

    Article  Google Scholar 

  • Ayalew L, Yamagishi H (2005) The application of GIS–based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, central Japan. Geomorphology 65:15–31

    Article  Google Scholar 

  • Ayalew L, Yamagishi H, Ugawa N (2004) Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture. Japan. Landslides 1(1):73–81

    Article  Google Scholar 

  • Bai S, Lü G, Wang J, Zhou P, Ding L (2010) GIS-based rare events logistic regression for landslide-susceptibility mapping of Lianyungang. China. Environ Earth Sci 62(1):139–149

    Article  Google Scholar 

  • Brabb EE, Pampeyan EH, Bonilla M (1972) Landslide susceptibility in the San Mateo County, California. In: Miscellaneous Field Studies, map MF-360. USGS, Reston

  • Brenning A (2005) Spatial prediction models for landslide hazards: review, comparison and evaluation. Nat Hazards Earth Syst Sci 5(6):853–862

    Article  Google Scholar 

  • Bui DT, Lofman O, Revhaug I (2011) Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression. Nat Hazards 59:1413–1444. doi:10.1007/s11069-011-9844-2

    Article  Google Scholar 

  • Can T, Nefeslioglu HA, Gokceoglu C, Snomez H, Duman TY (2005) Susceptibility assessment of shallow earth flows triggered by heavy rainfall at three sub catchments by logistic regression analyses. Geomorphology 72:250–271

    Article  Google Scholar 

  • Carrara A (1983) Multivariate models for landslide hazard evaluation. J Int Assoc Math Geol 15(3):403–426

    Article  Google Scholar 

  • Carrara A, Merenda L (1976) Landslide inventory in northern Calabria, southern Italy. Geol Soc Am Bull 87:1153–1162

    Article  Google Scholar 

  • Chauhan S, Sharma M, Arora MK, Gupta NK (2010) Landslide susceptibility zonation through ratings derived from artificial neural network. Int J Appl Earth Obs Geoinform 12:340–350

    Article  Google Scholar 

  • Chong Xu, Xiwei Xu, Dai Fuchu, Zhide Wu, He Honglin, Shi Feng, Xiyan Wu, Suning Xu (2013) Application of an incomplete landslide inventory, logistic regression model and its validation for landslide susceptibility mapping related to the May 12 2008 Wenchuan earthquake of China. Nat Hazards 68:883–900

    Article  Google Scholar 

  • Chung CF, Fabbri AG, van Westen CJ (1995) Multivariate regression analysis for landslide hazard zonation. Geographical information systems in assessing natural hazards. Springer, Netherlands

    Google Scholar 

  • Clerici A, Perego S, Tellini C, Vescovi P (2006) A GIS-based automated procedure for landslide susceptibility mapping by the conditional analysis method: the Baganza valley case study (Italian Northern Apennines). Environ Geol 50(7):941–961. doi:10.1007/s00254-006-0264-7

    Article  Google Scholar 

  • Constantin M, Bednarik M, Jurchescu MC (2011) Landslide susceptibility assessment using the bivariate statistical analysis and the index of entropy in the Sibiciu Basin (Romania). Environ Earth Sci 63(2):397–406

    Article  Google Scholar 

  • Corominas J, Westen CV, Frattini P (2014) Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Environ 73(2):209–263

    Google Scholar 

  • Dai FC, Lee CF (2002) Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 42(1):213–228

    Article  Google Scholar 

  • Dai FC, Lee CF (2003) A spatiotemporal probabilistic modeling of storm-induced shallow landsliding using aerial photographs and logistic regression. Earth Surf Proc Land 28(5):527–545. doi:10.1002/esp.456

    Article  Google Scholar 

  • Dai FC, Lee CF, Li J, Xu ZW (2001) Assessment of landslide susceptibility on the natural terrain of Lantau Island. Hong Kong. Environ Geol 40(3):381–391. doi:10.1007/s002540000163

    Google Scholar 

  • Dai FC, Lee CF, Tham LG, Ng KC, Shum WL (2004) Logistic regression modelling of storm-induced hallow landsliding in time and space on natural terrain of Lantau Island. Hong Kong. Bull Eng Geol Environ 63(4):315–327. doi:10.1007/s10064-004-0245-6

    Article  Google Scholar 

  • Damasevicius R (2010) Structural analysis of regulatory DNA sequences using grammar inference and support vector machine. Neurocomputing 73(4–6):633–638

    Article  Google Scholar 

  • Duman TY, Can T, Gokceoglu C, Nefeslioglu HA, Sonmez H (2006) Application of logistic regression for landslides susceptibility zoing of Cekmece Area, Istanbul, Yurkey. Environ Geol 51:241–256

    Article  Google Scholar 

  • Ercanoglu M, Gokceoglu C (2002) Assessment of landslide susceptibility for a landslide-prone area (North of Yenice, NW Turkey) by fuzzy approach. Environ Geol 41:720–730

    Article  Google Scholar 

  • Ercanoglu M, Gokceoglu C (2004) Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey). Eng Geol 75:229–250

    Article  Google Scholar 

  • Ercanoglu M, Kasmer O, Temiz N (2008) Adaptation and comparison of expert opinion to analytical hierarchy process for landslide susceptibility mapping. Bull Eng Geol Environ 67:565–578

    Article  Google Scholar 

  • Felicisimo A, Cuartero A, Remondo J, Quiros E (2013) Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study. Landslides 10:175–189. doi:10.1007/s10346-012-0320-1

    Article  Google Scholar 

  • Fenti V, Silvano S, Spagna V (1979) Methodological proposal for an engineering geomorphological map. Forecasting rockfalls in the alps. Bull Eng Geol Environ 19(1):134–138

    Google Scholar 

  • Foumelis M, Lekkas E, Parcharidis I (2004) Landslide susceptibility mapping by GIS- based qualitative weighting procedure in Corinth area. Bull Geol Soc Greece 36:904–912

    Google Scholar 

  • Goesevski PV, Gessler PE, Foltz RB, Elliot WJ (2006) Spatial prediction of landslide hazard using logistic regression and ROC analysis. Trans GIS 10(3):395–415

    Article  Google Scholar 

  • Gokceoglu C, Aksoy H (1996) Landslides susceptibility mapping of the slopes in the residual soils of the Mengen region (Turkey) by deterministic stability analyses and image processing techniques. Eng Geol 44:147–161

    Article  Google Scholar 

  • Guzzetti F, Carrarra A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multiscale study, Central Italy. Geomorphology 31:81–216

    Article  Google Scholar 

  • Hastie T, Tibshirani R, Friedman JH (2001) The elements of statistical learning: data mining inference and prediction. Springer, Berlin

    Book  Google Scholar 

  • Hengl T, Gruber S, Shrestha DP (2003) Digital terrain analysis in ILWIS. International Institute for Geo-information Science and Earth Observation Enschede, The Netherlands

    Google Scholar 

  • Holec J, Bednarik M, Sabo M, Minar J, Yilmaz I, Marschalko M (2013) A small-scale landslide susceptibility assessment for the territory of Western Carpathians. Nat Hazards 69(1):1081–1107

    Article  Google Scholar 

  • Ives JD, Messerli B (1981) Mountain hazard mapping in Nepal: introduction to an applied mountain research project. Mt Res Dev 3–4:223–230

    Article  Google Scholar 

  • Kanungo DP, Arora MK, Sarkar S, Gupta RP (2006) A comparative study of conventional ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Eng Geol 85:347–366

    Article  Google Scholar 

  • Kayastha P, Dhital MR, De Smedt F (2013) Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping: a case study from the Tinau watershed, west Nepal. Comput Geosci 52(1):398–408

    Article  Google Scholar 

  • Kienholz H (1978) Maps of geomorphology and natural hazard of Griendelwald, Switzerland, scale 1:10.000. Artic and Alpine Res 10:169–184

    Article  Google Scholar 

  • Kincal C, Akgun A, Koca MY (2009) Landslide susceptibility assessment in the Izmir (West Anatolia, Turkey) city center and its near vicinity by the logistic regression method. Enviorn Earth Sci 59:745–756

    Article  Google Scholar 

  • Komac M (2006) A landslide susceptibility model using the analytical hierarchy process method and multivariate statistics in perialpine Slovenia. Geomorphology 74(1):17–28

    Article  Google Scholar 

  • Lee S, Evangelista DG (2006) Earthquake-induced landslide-susceptibility mapping using an artificial neural network. Nat Hazards Earth Syst Sci 6:687–695

    Article  Google Scholar 

  • Lee S, Min K (2001) Statistical analysis of landslides susceptibility at Yongin. Korea. Environ Geol 40(9):1095–1113

    Article  Google Scholar 

  • Lee S, Min K (2004) Probabilistic landslide hazard mapping using GIS and remote sensing data at Boun. Korea. International Journal of Remote Sensing 25(11):2037–2052

    Article  Google Scholar 

  • Lee S, Pradhan B (2007) Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides 4(1):33–41

    Article  Google Scholar 

  • Lee S, Choi J, Oh H (2009) Landslide susceptibility mapping using a neuro-fuzzy. AGU Fall Meeting Abstracts #NH53A-1075

  • Lei TC, Wan T, Chou TY (2011) The knowledge expression on debris flow potential analysis through PCA + LDA and rough sets theory: a case study of Chen-Yu-Lan watershed, Nantou, Taiwan. Environ Earth Sci 63(5):981–997

    Article  Google Scholar 

  • Lucà F, Conforti M, Robustelli G (2011) Comparison of GIS-based gullying susceptibility mapping using bivariate and multivariate statistics: Northern Calabria, South Italy. Geomorphology 134(3):297–308

    Article  Google Scholar 

  • Luzi L, Pergalani F, Terlien MT (2000) Slope vulnerability to earthquakes at subregional scale, using probabilistic techniques and geographic information systems. Eng Geol 58(3):313–336

    Article  Google Scholar 

  • Magliulo P, Lisio AD, Russo F (2008) Geomorphology and landslide susceptibility assessment using GIS and bivariate statistics: a case study in southern Italy. Nat Hazards 47(3):411–435

    Article  Google Scholar 

  • Mahiny AS, Turner BJ (2003) Modelling past vegetation change through remote sensing and GIS: a comparison of neural networks and logistics regression methods. International conference on geoinformatics and modeling geographical system and fifth international workshop on Gis Beijing, pp 2–4

  • Malczewski J (1999) GIS and multicriteria decision analysis. Wiley, New York

    Google Scholar 

  • Micheletti N, Kanevski M, Bai SB, Wang J, Hong T (2013) Intelligent analysis of landslide data using machine learning algorithms. Landslide Sci Pract 3:161–167

    Article  Google Scholar 

  • Mohammady M, Pourghasemi HR, Pradhan B (2012) Landslide susceptibility mapping at Golestan Province Iran: a comparison between frequency ratio, Dempster-Shafer, and weights-of evidence models. J Asian Earth Sci 61:221–236

    Article  Google Scholar 

  • Nandi A, Shakoor A (2010) A GIS based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Eng Geol 110(1):11–20

    Article  Google Scholar 

  • Nefeslioglu HA, Duman TY, Duemaz S (2008a) Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Eastern Black Sea region of Turkey). Geomorphology 94:401–418

    Article  Google Scholar 

  • Nefeslioglu HA, Gokceoglu C, Sonmez H (2008b) An assessment on use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps. Eng Geol 97(3–4):171–191

    Article  Google Scholar 

  • Oh HJ, Lee S (2010) Cross-validation of logistic regression model for landslide susceptibility mapping at Ganeoung areas, Korea. Disaster Adv 3(2):44–55

    Google Scholar 

  • Oh HJ, Lee S (2011) Cross-application used to validate landslide susceptibility maps using a probabilistic model from Korea. Environ Earth Sci 64(2):395–409

    Article  Google Scholar 

  • Oh HJ, Pradhan B (2011) Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area. Comput Geosci 37(9):1264–1276

    Article  Google Scholar 

  • Ottenbacher KJ, Smith PM, Illig SB, Linn RT, Fieldler RC, Granger CV (2001) Comparison of logistic regression and neural networks to predict hospitalization in patients with stroke. Clin Epidemiol 54:1159–1165

    Article  Google Scholar 

  • Ouyang ZY, Xu WH, Wang XZ (2008) Impact assessment of Wenchuan earthquake on ecosystems. Acta Ecol Sinica 28:5801–5809

    Google Scholar 

  • Ozdemir A (2009) Landslide susceptibility mapping of vicinity of Yaka landslide (Gelendost, Turkey) using conditional probability approach in GIS. Environ Geol 57:1675–1686

    Article  Google Scholar 

  • Piegari E, Cataudella V, Di Maio R, Milano L, Nicodemi M, Soldovieri MG (2009) Electrical resistivity tomography and statistical analysis in landslide modelling: a conceptual approach. J Appl Geophys 68(2):151–158

    Article  Google Scholar 

  • Polykretis C, Ferentinou M, Chalkias C (2015) A comparative study of landslide susceptibility mapping using landslide susceptibility index and artificial neural networks in the Krios River and Krathis River catchments (northern Peloponnesus, Greece). Bull eng geol environ 74(1):27–45

    Article  Google Scholar 

  • Pourghasemi HR, Pradhan B, Gokceoglu C, Mohammadi M, Moradi HR (2012a) Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed, Iran. Arab J Geosci 6(7):2351–2365

    Article  Google Scholar 

  • Pourghasemi HR, Pradhan B, Gokceoglu C, Deylami Moezzi K (2012b) A comparative assessment of prediction capabilities of Dempster-Shafer and weights-of-evidence models in landslide susceptibility mapping using GIS. Geomat Nat Hazards Risk 4(2):93–118. doi:10.1080/19475705.2012.662915

    Article  Google Scholar 

  • Pourghasemi HR, Pradhan B, Gokceoglu C (2012c) Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Nat Hazards 63(2):956–996

    Article  Google Scholar 

  • Pradhan B (2010a) Remote sensing and GIS-based landslide hazard analysis and cross validation using multivariate logistic regression model on three test areas in Malaysia. Adv Space Res 45:1244–1256

    Article  Google Scholar 

  • Pradhan B (2010b) Application of an advanced fuzzy logic model for landslide susceptibility analysis. Int J Comput Intell Syst 3:370–381

    Article  Google Scholar 

  • Pradhan B (2010c) A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput Geosci 51(2):350–365

    Google Scholar 

  • Pradhan B (2011a) Manifestation of an advanced fuzzy logic model coupled with geoinformation techniques for landslide susceptibility analysis. Environ Ecol Stat 18(3):471–493

    Article  Google Scholar 

  • Pradhan B (2011b) Use of GIS-based fuzzy logic relations and its cross application to produce landslide susceptibility maps in three test areas in Malaysia. Environ Earth Sci 63(2):329–349

    Article  Google Scholar 

  • Pradhan B, Lee S (2007) Utilization of optical remote sensing data and GIS tools for regional landslide hazard analysis using an artificial neural network model. Earth Sci Front 14(16):143–152

    Google Scholar 

  • Pradhan B, Lee S, Mansor S, Buchroithner MF, Jallaluddin N, Khujaimah Z (2008) Utilization of optical remote sensing data and geographic information system tools for regional landslide hazard analysis by using binomial logistic regression model. J Appl Remote Sens 2(1):142–154

    Google Scholar 

  • Pradhan B, Sezer EA, Gokceoglu C (2010) Landslide susceptibility mapping by neuro-fuzzy approach in a landslide-prone area (Cameron Highlands, Malaysia). IEEE Trans Geosci Remote Sens 48(12):4164–4177

    Article  Google Scholar 

  • Rowbotham DN, Dudycha D (1998) GIS modelling of slope stability in Phewa Tal watershed. Nepal. Geomorphology 26(1):151–170

    Article  Google Scholar 

  • Rupke J, Cammeraat E, Seijmonsbergen A, Van WC (1988) Engineering geomorphology of Widentobel Catchment, Appenzell and Sankt Gallen, Switzerland: a geomorphological inventory system applied to geotechnical appraisal of slope stability. Eng Geol 26:33–68

    Article  Google Scholar 

  • Saaty TL (1977) A scaling method for priorities in hierarchical structures. J Math Psychol 15:234–281

    Article  Google Scholar 

  • Saaty TL (1980) The analytical hierarchy process. McGraw-Hill, New York

    Google Scholar 

  • Saaty TL (2000) Decision making for leaders: the analytical hierarchy process for decisions in a complex world. Eur J Oper Res 1989(42):107–109

    Google Scholar 

  • Saaty TL, Vargas GL (2001) Models, methods, concepts, and applications of the analytic hierarchy process. Kluwer Academic Publisher, London

    Book  Google Scholar 

  • Saha AK, Gupta RP, Arora MK (2002) GIS-based landslide hazard zonation in the Bhagirathi (Ganga) valley, Himalayas. Int J Remote Sen 23(2):357–369

    Article  Google Scholar 

  • Saha AK, Gupta RP, Sarkar I, Arora MK, Casplovics E (2005) An approach for GIS-based statistical landslide susceptibility zonation with a case study in the Himalayas. Lanslides 2:61–69

    Article  Google Scholar 

  • Santacana N, Baeza B, Corominas J, Paz A, Marturia J (2003) A GIS-based multivariate statistical analysis for shallow landslide susceptibility mapping in La Pobla de Lillet Area (Eastern Pyrenees, Spain). Nat Hazards 30(3):281–295

    Article  Google Scholar 

  • Sassa Kyoji, Tsuchiya Satoshi, Ugai Keizo, Wakai Akihiko, Uchimur Taro (2009) Landslides: a review of achievements in the first 5 years (2004–2009). Landslides 6(4):275–286

    Article  Google Scholar 

  • Scholkopf B, Smola A, Williamson RC, Bartlett PL (2000) New Support vector algorithms. Neural Comput 12:1207–1245

    Article  Google Scholar 

  • Schumacher M, Robner R, Vach W (1996) neural networks and logistic regression. PartI. Comput Stat Data Anal 21:661–682

    Article  Google Scholar 

  • Sezer EA, Pradhan B, Gokceoglu C (2011) Manifestation of an adaptive neuro-fuzzy model on landslide susceptibility mapping: Klang valley, Malaysia. Expert Syst Appl 38(7):8208–8219

    Article  Google Scholar 

  • Sujatha ER, Kumaravel P, Victor RG (2012) Landslide susceptibility mapping using remotely sensed data through conditional probability analysis using seed cell and point sampling techniques. J Indian Soc Remote Sens 40(4):669–678

    Article  Google Scholar 

  • Süzen ML, Doyuran V (2004) A comparison of the GIS based landslide susceptibility assessment methods: multivariate versus bivariate. Environ Geol 45(5):665–679

    Article  Google Scholar 

  • Süzen ML, Kaya BS (2012) Evaluation of environmental parameters in logistic regression models for landslide susceptibility mapping. Int J Digit Earth 5(4):338–355

    Article  Google Scholar 

  • Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293

    Article  Google Scholar 

  • Talebi A, Uijlenhoet R, Troch PA (2007) Soil moisture storage and hill slopes stability. Nat Hazards Earth Syst Sci 7(5):523–534

    Article  Google Scholar 

  • Tehrany MS, Pradhan B, Iebur MN (2013) Spatial prediction of flood susceptible areas using rule based decision tree and ensemble bivariate and multivariate statistical models. J Hydrol 504:69–79

    Article  Google Scholar 

  • Tien BD, Pradhan B, Lofman O (2012) Landslide susceptibility mapping at Hoa Binh province (Vietnam) using an adaptive neuro-fuzzy inference system and GIS. Comput Geosci 45(4):199–211

    Article  Google Scholar 

  • Tu JV (1996) Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. Clin Epidemiol 49(11):1225–1231

    Article  Google Scholar 

  • UNESO World Heritage Center (2006) Sichuan giant panda sanctuaries- Wolong, Mt Siguniang and Jiajin Mountains. http://whc.unesco.org/en/list/1213. Accessed 23 June 2006

  • Vahidnia MH, Alesheikh AA, Alimohammadi A, Hosseinali F (2010) A GIS-based neuro-fuzzy procedure for integrating knowledge and data in landslide susceptibility mapping. Comput Geosci 36:1101–1114

    Article  Google Scholar 

  • Vapnik V (1995) The nature of statistical learning theory. John Wiley and Sons, New York

    Book  Google Scholar 

  • Varnes DJ (1978) Slope movement types and processes. Transportation Research Board Special Report, New York

    Google Scholar 

  • Wilson JP, Gallant JC (2000) Terrain analysis: principles and applications. Wiley, New York

    Google Scholar 

  • Xu C, Xu XW, Yao Q, Wang YY (2013) GIS-based bivariate statistical modelling for earthquake-triggered landslides susceptibility mapping related to 2008 Wenchuan earthquake, China. Q J Eng Geol Hydrogeol 46(2):221–236. doi:10.1144/qjegh2012-006

    Article  Google Scholar 

  • Yalcin A, Reis S, Aydinoglu AC (2011) A GIS-based comparative study of frequency ration, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena 85(3):274–287

    Article  Google Scholar 

  • Yao X, Tham LG, Dai FC (2008) Landslide susceptibility mapping based on support vector machine: a case study on natural slopes of Hong Kong, China. Geomorphology 101(4):572–582

    Article  Google Scholar 

  • Yesilnacar E, Topal T (2005) Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Eng Geol 79(3–4):251–266

    Article  Google Scholar 

  • Yilmaz I (2008) A case study from Koyulhisar (Sivas-Turkey) for landslide susceptibility mapping by artificial neural networks. Bull Eng Geol Environ 68(3):297–306

    Article  Google Scholar 

  • Yilmaz I (2009) Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat-Turkey). Comput Geosci 35(6):1125–1138

    Article  Google Scholar 

  • Yilmaz I (2010a) Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine. Environ Earth Sci 61(4):821–836

    Article  Google Scholar 

  • Yilmaz I (2010b) The effect of the sampling strategies on the landslide susceptibility mapping by conditional probability (CP) and artificial neural networks (ANN). Environ Earth Sci 60(3):505–519

    Article  Google Scholar 

  • Yilmaz I, Yildirim M (2006) Structural and geomorphological aspects of the Kat landslides (Tokat-Turkey) and susceptibility mapping by means of GIS. Environ Geol 50(4):461–472

    Article  Google Scholar 

  • Yilmaz I, Yuksek AG (2008a) An example of artificial neural network (ANN) application for indirect estimation of rock parameters. Rock Mech Rock Eng 41(5):781–795

    Article  Google Scholar 

  • Yilmaz I, Yuksek AG (2008b) Prediction of the strength and elasticity modulus of gypsum using multiple regression, ANN, and ANFIS models. Int J Rock Mech Min Sci 46(4):803–810

    Article  Google Scholar 

  • Yilmaz C, Topal T, Süzen ML (2012) GIS-based landslide susceptibility mapping using bivariate statistical analysis in Devrek (Zonguldak-Turkey). Environ Earth Sci 65(7):2161–2178

    Article  Google Scholar 

  • Yoshimatsu H, Abe S (2006) A review of landslide hazards in Japan and assessment of their susceptibility using an analytical hierarchic process (AHP) method. Landslides 3(2):149–158

    Article  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–352

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by the Open Fund of the Center for Earth Observation and Digital Earth, the Chinese Academy of Sciences (grant No. 2013LDE006). We would like to thank Dr.s Xinyuan Wang, Chuan Sheng Liu, and Jing Zhen for providing various datasets and advice throughout this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingkai Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Q., Miao, F., Zhen, J. et al. GIS-based landslide susceptibility mapping with logistic regression, analytical hierarchy process, and combined fuzzy and support vector machine methods: a case study from Wolong Giant Panda Natural Reserve, China. Bull Eng Geol Environ 75, 923–944 (2016). https://doi.org/10.1007/s10064-015-0786-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-015-0786-x

Keywords

Navigation