Skip to main content
Log in

Mapping and characterization of rock discontinuities in a tunnel using 3D terrestrial laser scanning

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

This paper attempts to evaluate various methods of geometrical discontinuity characterization using point clouds that are generated with three-dimensional terrestrial laser scanning (3DTLS) in a tunnel. The use of 3DTLS to support discontinuity mapping in tunnels enables the acquisition of a large amount of data without limitations in terms of the tunnel position (wall or roof). Thus, the discontinuity orientation, trace length and frequency were statistically analyzed in different regions of the tunnel to determine the most representative data. Different methods of estimating the mean trace length were compared while considering the variations in the rock face orientation in the tunnel, and the unbiased standard deviation of the trace length was evaluated. The frequencies of discontinuity sets were obtained using scanlines, and aspects of window sampling for density (areal frequency) estimates in tunnels are discussed. The mean trace lengths obtained using rectangular sampling windows (considering the relative frequency of the traces) are more suitable for estimates of different rock face orientations, particularly when the orientation of the discontinuity set varies significantly. In this case, measurements of samples from the tunnel roof presented higher values for both frequency and mean trace length estimates, which demonstrates the importance of data acquisition and evaluation in this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Baecher GB (1980) Progressively censored sampling of rock joints traces. Math Geol 12(1):33–40. doi:10.1007/BF01039902

    Article  Google Scholar 

  • Crosta G (1997) Evaluating rock mass geometry from photogrammetric images. Rock Mech Rock Eng 30(1):35–38. doi:10.1007/BF01020112

    Article  Google Scholar 

  • Cruden DM (1977) Describing the size of discontinuities. Int J Rock Mech Min Sci Geomech Abstr 14:133–137. doi:10.1016/0148-9062(77)90004-3

    Article  Google Scholar 

  • Faro Inc. (2013) SCENE V 5.0, Lake Mary, FL

  • Fekete S, Diederichs M, Lato M (2010) Geotechnical and operational applications for 3-dimensional laser scanning in drill and blast tunnels. J Tunn Undergr Space Technol 25:614–628. doi:10.1016/j.tust.2010.04.008

    Article  Google Scholar 

  • Ferrero AM, Forlani G, Roncella R, Voyat HI (2009) Advanced geostructural survey methods applied to rock mass characterization. Rock Mech Rock Eng 42:631–665. doi:10.1007/s00603-008-0010-4

    Article  Google Scholar 

  • Gigli G, Casagli N (2011) Semi-automatic extraction of rock mass structural data from high resolution LIDAR point clouds. Int J Rock Mech Min Sci 48:187–198. doi:10.1016/j.ijrmms.2010.11.009

    Article  Google Scholar 

  • Haneberg WC (2008) Using close range terrestrial digital photogrammetry for 3-D rock slope modeling and discontinuity mapping in the United States. Bull Eng Geol Environ 67:457–469. doi:10.1007/s10064-008-0157-y

    Article  Google Scholar 

  • International Society for Rock Mechanics (1978) Suggested methods for the quantitative description of discontinuities in rock masses. Int J Rock Mech Min Sci Geomech Abstr 15:319–368. doi:10.1016/0148-9062(78)91472-9

    Article  Google Scholar 

  • Itasca Consulting Group (2004) 3DEC V 4.1, Minneapolis, MN

  • Kemeny J, Turner K, Norton B (2006) LIDAR for rock mass characterization: hardware, software, accuracy and best-practices. In: Proceedings of the workshop on laser and photogrammetric methods for rock face characterization, Golden, CO, pp 49–61

  • Kim BH, Cai M, Kaiser PK, Yang HS (2007) Estimation of block size for rock masses with non-persistent joints. Rock Mech Rock Eng 40(2):169–192. doi:10.1007/s00603-006-0093-8

    Article  Google Scholar 

  • Kulatilake PHSW, Wu TH (1984a) Estimation of mean trace length of discontinuities. Rock Mech Rock Eng 17:215–232. doi:10.1007/BF01032335

    Article  Google Scholar 

  • Kulatilake PHSW, Wu TH (1984b) The density of discontinuity traces in sampling windows. Int J Rock Mech Min Sci Geomech Abstr 21(6):345–347. doi:10.1016/0148-9062(84)90367-X

    Article  Google Scholar 

  • Lato MJ, Vöge M (2012) Automated mapping of rock discontinuities in 3D lidar and photogrammetry models. Int J Rock Mech Min Sci 54:150–158. doi:10.1016/j.ijrmms.2012.06.003

    Google Scholar 

  • Lato MJ, Diederichs MS, Hutchinson DJ, Harrap R (2009) Optimization of LiDAR scanning and processing for automated structural evaluation of discontinuities in rock masses. Int J Rock Mech Min Sci 46:194–199. doi:10.1016/j.ijrmms.2008.04.007

    Article  Google Scholar 

  • Lato MJ, Diederichs MS, Hutchinson DJ (2010) Bias correction for view-limited lidar scanning of rock outcrops structural characterization. Rock Mech Rock Eng 43:615–628. doi:10.1007/s00603-010-0086-5

    Article  Google Scholar 

  • Mah J, Samson C, Mckinnon SD (2011) 3D laser imaging for joint orientation analysis. Int J Rock Mech Min Sci 48:932–941. doi:10.1016/j.ijrmms.2011.04.010

    Article  Google Scholar 

  • Mauldon M (1998) Estimating mean fracture trace length and density from observation in convex windows. Rock Mech Rock Eng 31(4):201–216. doi:10.1007/s006030050021

    Article  Google Scholar 

  • Mauldon M, Dunne WM, Rohrbaugh MB Jr (2001) Circular scanlines and circular windows: new tools for characterizing the geometry of fracture traces. J Struct Geol 23:247–258. doi:10.1016/S0191-8141(00)00094-8

    Article  Google Scholar 

  • Pahl PJ (1981) Estimating the mean length of discontinuity traces. Int J Rock Mech Min Sci Geomech Abstr 18:221–228. doi:10.1016/0148-9062(81)90976-1

    Article  Google Scholar 

  • Priest SD (1993) Discontinuity analysis for rock engineering. Chapman & Hall, London

    Book  Google Scholar 

  • Rocscience Inc. (2006) DIPS V 5.1, Toronto, Ontario

  • Slob S, Hack HRGK, Feng Q, Röshoff K, Tunner AK (2007) Fracture mapping using 3D laser scanning techniques. In: 11th congress of the international society for rock mechanics, Lisbon, pp 299–302

  • Split Engineering, LCC. (2007) Split-FX V 2.1, Tucson, AZ

  • Strouth A, Eberhardt E, Hungr O (2006) The use of lidar to overcome rock slope hazard data collection challenges at Afternoon Creek, Washington. In: 41st U.S. symposium on rock mechanics (USRMS), CO, pp 17–21

  • Sturzenegger M, Stead D (2009) Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts. Eng Geol 106:163–182. doi:10.1016/j.enggeo.2009.03.004

    Article  Google Scholar 

  • Sturzenegger M, Stead D, Elmo D (2011) Terrestrial remote sensing-based estimation of mean trace length, trace intensity and block size/shape. Eng Geol 119:96–111. doi:10.1016/j.enggeo.2011.02.005

    Article  Google Scholar 

  • Terzaghi RD (1965) Sources of error in joint surveys. Geotechnique 15:287–304. doi:10.1680/geot.1965.15.3.287

    Article  Google Scholar 

  • Umili G, Ferrero A, Einstein HH (2013) A new method for automatic discontinuity traces sampling on rock mass 3D model. Comput Geosci 51:182–192. doi:10.1016/j.cageo.2012.07.026

    Article  Google Scholar 

  • Wathugala DN, Kulatilake PHSW (1990) A general procedure to correct sampling bias on joint orientation using a vector approach. Comput Geotech 10:1–31. doi:10.1016/0266-352X(90)90006-H

    Article  Google Scholar 

  • Wu Q, Kulatilake PHSW, Tang H (2011) Comparison of rock discontinuity mean trace length and density estimation methods using discontinuity data from an outcrop in Wenchuan area, China. Comput Geotech 38:258–268. doi:10.1016/j.compgeo.2010.12.003

    Article  Google Scholar 

  • Zhang L, Einstein HH (1998) Estimating the mean trace length of rock discontinuities. Rock Mech Rock Eng 31(4):217–235. doi:10.1007/s006030050022

    Article  Google Scholar 

  • Zhang L, Einstein HH (2000) Estimating the intensity of rock discontinuities. Int J Rock Mech Min Sci 37:819–837. doi:10.1016/S1365-1609(00)00022-8

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the company VALE SA and the National Council of Technological and Scientific Development (CNPq) for the logistical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Pazzoto Cacciari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cacciari, P.P., Futai, M.M. Mapping and characterization of rock discontinuities in a tunnel using 3D terrestrial laser scanning. Bull Eng Geol Environ 75, 223–237 (2016). https://doi.org/10.1007/s10064-015-0748-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-015-0748-3

Keywords

Navigation