Skip to main content
Log in

Evaluation of damage to light structures erected on a fill material rich in expansive soil

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

The paper reports a study of the cause of defects in light structures and the toppling of a wall constructed on a fill material rich in Ankara clay. Laboratory tests were carried out on vertical and horizontal samples from boreholes and a trial pit was excavated near the damaged structures. The results showed that in the vicinity of the toppled wall, swelling pressures in the horizontal direction were greater than those measured in the vertical direction. The swelling properties of the fill material were higher than those of original Ankara clay as determined previously by other investigators, suggesting that breakdown of the cementing bonds and a change in the fabric are the main factors affecting the swelling pressure of disturbed and compacted expansive soils. The calculations to predict uplift showed a good agreement with the observations in the damaged structures. It is concluded that swelling was the main cause of the damage to the light structures at the study site and resulted from the highly expansive nature of the fill material, poor drainage, the semi-arid climate, poor construction methods and ineffective precautions. Some recommendations for minimizing the effects of swelling at the study site are briefly outlined.

Résumé

L’article présente une étude sur les causes de défauts dans des structures légères et le basculement d’un mur, ouvrages construits sur des matériaux de remblai contenant de l’argile d’Ankara. Des essais de laboratoire ont été réalisés sur des échantillons prélevés en sondage et découpés verticalement ou horizontalement. Une tranchée d’observation fut excavée près des structures endommagées. Les résultats ont montré qu’à proximité du mur basculé, les pressions de gonflement dans la direction horizontale étaient plus fortes que dans la direction verticale. De plus, les propriétés de gonflement du matériau de remblai étaient plus importantes que celles de l’argile d’Ankara intacte, suivant les mesures faites antérieurement par d’autres chercheurs, ce qui suggère que la disparition des liens de cimentation et la modification de la microstructure sont les facteurs principaux qui contrôlent la pression de gonflement des sols gonflants remaniés et compactés. Les calculs réalisés pour prévoir le gonflement ont montré un bon accord avec les observations faites sur les structures endommagées. On conclut que le gonflement des sols de fondation était la cause principale des dommages affectant les structures légères sur le site d’étude et que ces dommages résultaient de la nature fortement gonflante des matériaux de remblai, du faible drainage du terrain, du climat semi-aride et des méthodes de construction peu adaptées au terrain. Des recommandations pour minimiser les effets du gonflement sur le site d’étude sont brièvement données.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • AFNOR (L’Association Francaise De Normalisation) (1980) Essai au bleu de methylene. P18-592, AFNOR 80181, Paris La Defence

  • Al-Homoud AS, Al-Suleiman TI (1997) Loss in serviceability of pavements due to expansive clay subgrades. Environ Eng Geosci III (1):277–294

  • ASTM (2000) Annual book of ASTM standards—soil and rock, building stones, Section 4, Construction, v. 04.08. ASTM Publication, Philadelphia, USA

    Google Scholar 

  • Avsar E, Ulusay R, Erguler ZA (2005) Swelling properties of Ankara (Turkey) clay with carbonate concretions. Environ Eng Geosci XI (1):75–95

  • Avsar E, Ulusay R, Sonmez H (2009) Assessments of swelling anisotropy of Ankara clay. Eng Geol 105:24–31

    Article  Google Scholar 

  • Basma AA (1991) Estimating uplift of foundations due to expansion: a case history. Geotech Eng 22:217–231

    Google Scholar 

  • Bell FG, Maud RR (1995) Expansive clays and construction, especially of low-rise structures: a viewpoint from Natal, South Africa. Environ Eng Geosci I (1):41–59

  • Birand AA (1963) Study of the characteristics of Ankara clays showing swelling properties. M.Sc Thesis, Department of Civil Engineering, Middle East Technical University, Ankara, Turkey

  • Bowles JE (1989) Foundation analysis and design, 4th edn. McGraw Hill, New York

    Google Scholar 

  • Chen FH (1988) Foundations on expansive soils. Elsevier, Amsterdam, the Netherlands

    Google Scholar 

  • Claudia M (2000) Predicting swelling/shrinkage potential using the methylene blue method: some examples in Italian clayey soils. GeoEng 2000, International Conference on Geotechnical and Geological Engineering, Melbourne, Australia (on CD)

  • Cokca E (1991) Swelling potential of expansive soils with a critical appraisal of the identification of swelling of Ankara soils by methylene blue tests. PhD Thesis, Department of Civil Engineering, Middle East Technical University, Ankara, Turkey

  • Cokca E, Birand AA (1993a) Determination of cation exchange capacity of clayey soils by the methylene blue test. Geotech Test J 16(4):518–524

    Article  Google Scholar 

  • Cokca E, Birand AA (1993b) Prediction of swelling potential of Ankara soils by methylene blue test. DOGA Turkish J Eng Environ Sci 17:57–63

    Google Scholar 

  • Day RW (1996) Study of capillary rise and thermal osmosis. J Environ Eng Geosci, Joint Publ, AEG and GSA 2(2):249–254

    Google Scholar 

  • Day RW (2006) Foundation engineering handbook. McGraw-Hill, New York, USA

    Google Scholar 

  • Derriche Z, Iguechtal L (2000) Damage due to swelling soils in the region of In-Amenas: Algeria. GeoEng 2000, International Conference on Geotechnical and Geological Engineering, Melbourne, Australia (on CD)

  • Du Y, Li S, Hayashi S (1999) Swelling–shrinkage properties and soil improvement of compacted expansive soil, Ning-Liang Highway, China. Eng Geol 53:351–358

    Article  Google Scholar 

  • Erguler ZA, Ulusay R (2003a) Engineering characteristics and environmental impacts of the expansive Ankara clay, and swelling maps for SW and central parts of the Ankara (Turkey) metropolitan area. Environ Geol 44(8):979–992

    Article  Google Scholar 

  • Erguler ZA, Ulusay R (2003b) A simple test and predictive models for assessing swell potential of Ankara (Turkey) Clay. Eng Geol 67:331–352

    Article  Google Scholar 

  • Fityus SG, Smith DW, Jennor AM (2000) Surface area using methylene blue adsorption as a measure of soil expansivity. GeoEng 2000, International Conference on Geotechnical and Geological Engineering, Melbourne, Australia (on CD)

  • Furtun U (1989) An investigation on Ankara soils with regard to swelling. MSc Thesis, Department of Civil Engineering, Middle East Technical University, Ankara, Turkey

  • Gundogdu MNG (1982) Geological, mineralogical and geochemical investigation of the Neogene aged Bigadic sedimentary basin. PhD Thesis, Department of Geological Engineering, Hacettepe University, Ankara, Turkey (in Turkish)

  • Hang PT, Brindley GW (1970) Methylene blue adsorption by clay minerals, determination of surface area and cation exchange capacities, Clay Organic Studies XVIII. Clays and Clay Minerals 18:203–221

    Article  Google Scholar 

  • Holtz WG, Gibbs H (1956) Engineering properties of expansive clays. Transact Am Soc Civil Eng 121:641–677

    Google Scholar 

  • Magngira MB, Paige-Green P (2008) Evaluation of damage to a road and sports complex on expansive clays. In: Proceedings of the 6th International conference on case histories in geotechnical engineering, Arlington, VA, Paper No. 8.08b, pp 1–11

  • Meisina C (2002) Swelling/shrinkage hazard assessment applications in Italy. In: Proceedings of the 9th Congress of International Association for Engineering Geology and Environment, Durban, South Africa, pp 625–635

  • Meyerhof GG (1953) The bearing capacity of foundations under eccentric and inclined loads, Proceedings, 3rd International conference on soil mechanics and foundation engineering, Zurich, vol 1., No 1, pp 440–445

  • Nelson JD, Miller DJ (1992) Expansive soils, problems and practice in foundation and pavement engineering. Wiley, New York

    Google Scholar 

  • Nevins MJ, Weintritt DJ (1967) Determination of cation exchange capacity by methylene blue adsorption. Ceramic Bull 46(4):587–592

    Google Scholar 

  • O’Neill MW, Poormoayed M (1980) Methodology for foundations on expansive clays. J Geotech Eng Divison, ASCE 106(GT12):5–1367

    Google Scholar 

  • Omay B (1970) Swelling clays on METU campus. MSc Thesis, Department of Civil Engineering, Middle East Technical University, Ankara, Turkey

  • Ordemir I, Alyanak I, Birand AA (1965) Report on Ankara Clay. METU Publication No. 12, Ankara, Turkey

  • Ordemir I, Soydemir C, Birand AA (1977) Swelling problems of Ankara clays. In: Proceedings of the 9th international conference on soil mechanics and foundation engineering, vol 1. Tokyo, Japan, pp 243–247

  • Popa A (1997) Shrinkage-swelling phenomena effects on building. Proceedings of the international symposium on engineering geology and the environment, Athens, Greece. Balkema, Rotterdam, pp 327–329

    Google Scholar 

  • Popescu ME (1979) Engineering problems associated with expansive clays from Romania. Eng Geol 14:43–53

    Article  Google Scholar 

  • Shi B, Jiang H, Liu Z, Fang HY (2002) Engineering geological characteristics of expansive soils in China. Eng Geol 67:63–71

    Article  Google Scholar 

  • Sivapullaiah PV, Sitharam TG, Rao KSS (1987) Modified free swell index for clays. Geotech Test J 10(2):80–85

    Article  Google Scholar 

  • Sowers GF (1979) Soil mechanics and foundations: geotechnical engineering, 4th edn. Macmillan, New York

    Google Scholar 

  • Tang AM, Cui YJ, Trinh VN, Szerman Y, Marchadier G (2009) Analysis of the railway heave induced by soil swelling at a site in southern France. Eng Geol 106:68–77

    Article  Google Scholar 

  • Ulusay R (1975) Geo-engineering properties of north-central part of Ankara City. M.Sc Thesis, Department of Geological Engineering, Hacettepe University, Ankara, Turkey (in Turkish)

  • Uner AK (1977) A comparison of engineering properties of two soil types in the Ankara region. MSc Thesis, Department of Civil Engineering, Middle East Technical University, Ankara, Turkey

  • Van der Merve DH (1964) The prediction of heave from the plasticity index and the percentage clay fraction. The Civil Eng (S Afr Inst Civil Eng) 6:103–107

    Google Scholar 

Download references

Acknowledgments

It is a pleasure for the authors to acknowledge the logistic support of Fatih Adil during the borings. The authors also specially thank the General Directorate of Meteorology for providing the rainfall data, Prof. Dr. Abidin Temel of the Geological Engineering Department at Hacettepe University for his kind help with XRD analyses and Semih Senkan (graduate student of Gazi University) for his help during the sampling and testing stages of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Resat Ulusay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozer, M., Ulusay, R. & Isik, N.S. Evaluation of damage to light structures erected on a fill material rich in expansive soil. Bull Eng Geol Environ 71, 21–36 (2012). https://doi.org/10.1007/s10064-011-0395-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-011-0395-2

Keywords

Mots clés

Navigation