Skip to main content
Log in

High-resolution lidar-based landslide hazard mapping and modeling, UCSF Parnassus Campus, San Francisco, USA

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Airborne lidar (light detection and ranging) was used to create a high-resolution digital elevation model (DEM) and produce landslide hazard maps of the University of California, San Francisco Parnassus Campus. The lidar DEM consisted of nearly 2.8 million interpolated elevation values covering approximately100 ha and posted on an 0.6 m horizontal grid, from which a set of 16 maps was produced. The first subset of maps showed aspects of the topography useful for landslide mapping, an engineering geological map and a qualitative slope hazard map. The second subset consisted of physics-based probabilistic landslide hazard maps for wet static, wet seismic, and dry seismic conditions. This case history illustrates the utility of lidar-based products, supplemented by field-based geological observations and physics-based probabilistic slope stability modeling, for the evaluation of existing and potential slope stability hazards on a steep and heavily forested site.

Résumé

Le lidar (light detection and ranging) aéroporté a été utilisé pour créer un modèle numérique d’altitude (MNA) et pour produire des cartes de risque de glissement de terrain de l'Université de Californie, au Parnassus Campus à San Francisco. Le MNA lidar est composé de près de 2.8 millions de valeurs d'altitude calculées par interpolation couvrant environ 100 hectares et placées sur une grille cartographique horizontale de 0.6 m, duquelle une série de 16 cartes a été produite. Le premier sous-ensemble de cartes a révélé des aspects de la topographie utiles pour la cartographie des glissements de terrain, une carte de génie géologique et une carte qualitative des aléas en talus. Le second sous-ensemble consistait en des cartes probabilistes de risque de glissement de terrain basées sur la physique pour des conditions de pente statiques humides et sismiques sèches et humides. Cette étude de cas illustre l'utilité des produits à base de données lidar, complétés par des observations géologiques de terrain et par la modélisation probabiliste de la stabilité des pentes basée sur la physique, pour l'évaluation des aléas existants ou potentiels liés à la stabilité des pentes sur des sites fortement boisés et pentés.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ardizzone F, Cardinali M, Galli M, Guzzetti F, Hovius N, Peruccacci S, Reichenbach P, Rossi M, Stark CP (2006) Identification and mapping of landslides using lidar technology. Geophys Res Abstr 8:05603 SRef-ID: 1607-7962/gra/EGU06-A-05603

    Google Scholar 

  • Blake MC, Graymer RW, Jones DL (2000) Geologic map and map database of parts of Marin, San Francisco, Alameda, Contra Costa, and Sonoma Counties, California. Miscellaneous Field Studies Map MF-2337. U.S. Geological Survey, Reston

  • Delano HL, Braun DD (2007) PAMAP lidar-based elevation data: a new tool for geologic and hazard mapping in Pennsylvania. Geol Soc Am Abstr Programs 39(6):167

    Google Scholar 

  • Drazba MC, Inglish AR, Burns S (2006) Mapping landslide thresholds, using lidar in the West Hills of Portland, Oregon. Geol Soc Am Abstr Programs 38(7):563

    Google Scholar 

  • Falls JN, Wills CJ, Hardin BC (2004) Utility of lidar survey for landslide mapping of the Highway 299 corridor, Humboldt County, California. Geol Soc Am Abstr Programs 36(5):331

    Google Scholar 

  • Glenn NF, Streutker DR, Chadwick DJ, Thackray GD, Dorsch SJ (2005) Analysis of lidar-derived topographic information characterizing and differentiating landslide morphology and activity. Geomorphology 73(1–2):131–148. doi:10.1016/j.geomorph.2005.07.006

    Google Scholar 

  • Hammond C, Hall D, Miller S, Swetik P (1992) Level I stability analysis (LISA) documentation for version 2.0. General Technical Report INT-285. Forest Service, Intermountain Research Station, U.S. Department of Agriculture, Ogden, 190 p

  • Haneberg WC (2000) Deterministic and probabilistic approaches to geologic hazard assessment. Environ Eng Geosci 6:209–226

    Google Scholar 

  • Haneberg WC (2004) A rational probabilistic method for spatially distributed landslide hazard assessment. Environ Eng Geosci 10(1):27–43. doi:10.2113/10.1.27

    Article  Google Scholar 

  • Haneberg WC (2006a) Effects of digital elevation model errors on spatially distributed seismic slope stability calculations: an example from Seattle, Washington. Environ Eng Geosci 12(3):247–260. doi:10.2113/gseegeosci.12.3.247

    Article  Google Scholar 

  • Haneberg WC (2006b) PISA-m: map-based probabilistic infinite slope analysis, version 1.0. User manual. Haneberg Geoscience, Seattle. http://www.haneberg.com/manual_1_0_1.pdf. Accessed 8 July 2008

  • Haneberg WC (2007) Large-scale terrain visualization using SRTM digital elevation models: an example from the Indian Himalaya. Geol Soc Am Abstr Programs (39)6:166

  • Haneberg WC (2008) Elevation errors in a LIDAR digital elevation model of West Seattle and their effects on slope stability calculations. In: Baum RL, Godt J, Highland L (eds) Landslides and engineering geology of the Greater Seattle area, Washington. Geological Society of America Reviews in Engineering Geology, vol 20. Geological Society of America, Boulder, pp 55–66

    Google Scholar 

  • Haneberg WC, Creighton AL, Medley EW, Jonas DA (2005) Use of lidar to assess slope hazards at the Lihir gold mine, Papua New Guinea. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) Landslide risk management: proceedings of international conference on landslide risk management, Vancouver, Canada, 31 May to 3 June, 2005, Supplementary CD. A. A. Balkema, New York

  • Jibson RW, Jibson MW (2003) Java programs for using Newmark’s method and simplified decoupled analysis to model slope performance during earthquakes (version 1.1). U.S. Geological Survey Open-File Report 03-005 (CD-ROM). U.S. Geological Survey, Reston

  • Jibson RW, Harp EL, Michael JA (2000) A method for producing digital probabilistic seismic landslide hazard maps. Eng Geol 58:271–289

    Article  Google Scholar 

  • Keaton JR, DeGraff JV (1996) Surface observation and geologic mapping. In: Turner AK, Schuster RL (eds) Landslides, investigation and mitigation. Transportation Research Board Special Report 247. Transportation Research Board, Washington, DC, pp 178–230

  • Mankelow JM, Murphy W (1998) Using GIS in the probabilistic assessment of earthquake triggered landslide hazards. J Earthquake Eng 2(4):593–623

    Article  Google Scholar 

  • McKean J, Roering J (2004) Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry. Geomorphology 57:331–351

    Article  Google Scholar 

  • Newmark NM (1965) Effects of earthquakes on dams and embankments. Geotechnique 15:139–160

    Article  Google Scholar 

  • Roering JJ, Kirchner JW, Dietrich WE (2005) Characterizing structural and lithologic controls on deep-seated landsliding: implications for topographic relief and landscape evolution in the Oregon Coast Range, USA. Geol Soc Am Bull 117(5/6):654–668. doi:10.1130/B25567.1

    Article  Google Scholar 

  • Sato HP, Yagi H, Moarai M, Iwahashi J, Sekiguchi T (2007) Airborne lidar data measurement and landform classification mapping in Tomari-no-tai landslide area, Shirakami Mountains, Japan. In: Sassa K, Fukuoka H, Wang F, Wang G (eds) Progress in Landslide Science. Springer, Berlin, pp 237–249

    Chapter  Google Scholar 

  • Schlocker J (1974) Geology of the San Francisco North Quadrangle, California. U.S. Geological Survey Professional Paper 782. U.S. Geological Survey, Washington DC, 109 p

  • Schulz WH (2006) Landslide susceptibility revealed by lidar imagery and historical records, Seattle, Washington. Eng Geol 89(1–2):67–87. doi:10.1016/j.enggeo.2006.09.019

    Google Scholar 

  • Stillwater Sciences (2007) Landslide hazard in the Elk River basin, Humboldt County, California. Unpublished consulting report. Stillwater Sciences, Arcata

  • Troost KG, Wisher AP, Haneberg WC (2006) A multifaceted approach to high-resolution geologic mapping of Mercer Island, near Seattle, Washington. Geol Soc Am Abstr Programs 37(7):164

    Google Scholar 

  • Van Den Eeckhaut M, Poesen J, Verstraeten G, Vanacker V, Nyssen J, Moeyersons J, van Beek LPH, Vandekerckhove L (2006) Use of lidar-derived images for mapping old landslides under forest. Earth Surf Processes Landforms 32(5):754–769. doi:10.1002/esp.1417

    Article  Google Scholar 

  • van Westen CJ, Terlien MTJ (1996) An approach towards eterministic landslide hazard analysis in GIS: a case study from Manizales (Columbia). Earth Surf Processes Landforms 21(9):853–868. doi:10.1002/(SICI)1096-9837(199609)21:9<853::AID-ESP676>3.0.CO;2-C

    Article  Google Scholar 

  • Weppner E, Hoyt J, Haneberg WC (2008a) Slope stability modeling and landslide hazard in Freshwater Creek and Ryan Slough, Humboldt County, California: unpublished consulting report. Pacific Watershed Associates, Arcata, 72 p

  • Weppner E, Hoyt J, Haneberg WC (2008b) Lidar-based landslide hazard modeling using PISA-m, SHALSTAB, and SMORPH, Freshwater Creek and Ryan Slough watershed, Humboldt County, California. Eos Trans AGU 89(53) (Fall Meeting Supplement, Abstract H41K-04)

  • Wilson RI, Wiegers MO, McCrink TP (2000) Earthquake-induced landslide evaluation report. In: Seismic Hazard Zone Report for the City and County of San Francisco, California. California Division of Mines and Geology Seismic Hazard Zone Report 043. California Division of Mines and Geology, San Francisco, pp 19–39

  • Wolff TF (1996) Probabilistic slope stability in theory and practice. In: Shackleford CD, Roth MJS (eds) Uncertainty in the geologic environment: from theory to practice. Proceeding, Uncertainty ‘96, American Society of Civil Engineers Special Paper 58. American Society of Civil Engineers, New York, pp 419–433

  • Wooten RM, Latham RS, Witt AC, Douglas TJ, Gillon KA, Fuemmeler SJ, Bauer JB, Nickerson JG, Reid JC (2007) Landslide hazard mapping in North Carolina—geology in the interest of public safety and informed decision making. Geol Soc Am Abstr Programs 39(2):76

    Google Scholar 

  • Wu TH, Tang WH, Einsten HH (1996) Landslide hazard and risk assessment. In: Turner AK, Schuster RL (eds) Landslides, investigation and mitigation. Transportation Research Board Special Report 247. Transportation Research Board, Washington, DC, pp 106–118

Download references

Acknowledgments

The work described in this paper was funded by the University of California, San Francisco (UCSF). The UCSF project manager was Ms Ivy Chiao. Collection and initial processing of the lidar data was performed by Airborne 1 of El Segundo, California. Laurel Jiang of Rutherford & Chekene provided invaluable assistance during this project and referee Scott Burns offered suggestions for improvement of the manuscript. We also appreciate the early involvement of Ed Medley, who helped to initiate the project and bring together the authors. Rejean Couture helped to translate the French version of the abstract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William C. Haneberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haneberg, W.C., Cole, W.F. & Kasali, G. High-resolution lidar-based landslide hazard mapping and modeling, UCSF Parnassus Campus, San Francisco, USA. Bull Eng Geol Environ 68, 263–276 (2009). https://doi.org/10.1007/s10064-009-0204-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-009-0204-3

Keywords

Mots clés

Navigation