Skip to main content
Log in

Mechanische Reanimationsgeräte

Mechanical resuscitation machines

  • Leitthema
  • Published:
Notfall + Rettungsmedizin Aims and scope Submit manuscript

Zusammenfassung

Die Basismaßnahmen – Thoraxkompression und Beatmung – sind die Kernmaßnahmen der Reanimation und entscheidend für Erfolg und Misserfolg. Auch professionelle Helfer sind nicht immer in der Lage, die notwendige Qualität der Maßnahmen zu garantieren. Insofern wurden schon viele Geräte für die mechanische Reanimation entwickelt, um die Thoraxkompression und den daraus resultierenden passiven Notkreislauf zu optimieren. Im vorliegenden Artikel werden die in Deutschland derzeit verfügbaren mechanischen Reanimationssysteme vorgestellt und erläutert (ACD-CPR, ANIMAX®, LUCAS™ und AutoPulse®). Eine generelle Empfehlung zum Einsatz von mechanischen Reanimationsgeräten kann anhand der derzeitigen Datenlage nicht gegeben werden. Die Ergebnisse der aktuell laufenden, prospektiv randomisierten Untersuchungen sollten abgewartet werden, bis weitere Schlüsse gezogen werden können. Fallserien und kleinere Studien zeigen, dass in Einzelfällen (z. B. bei Hypothermie, Lungenembolie sowie Transport oder im Falle von koronarer Intervention bei fortbestehendem Herz-Kreislauf-Stillstand) ausgewählte Patienten von diesen Geräten (LUCAS™ und AutoPulse®) profitieren könnten.

Abstract

Basic life support (BLS), compression and breathing, are the key measures of resuscitation and of paramount importance for survival after cardiac arrest. Even professional rescuers are not able to provide the necessary BLS quality in all patients. Therefore, many mechanical cardiopulmonary resuscitation (CPR) devices were developed in the last decades to optimize compression and organ blood flow during CPR. In this review article CPR devices available in Germany are presented and discussed (ACD-CPR, ANIMAX®, LUCAS™ and AutoPulse®). Concerning current trials and publications a general recommendation for the use of these mechanical CPR devices cannot be given. The results of ongoing randomized clinical trials must be considered before further conclusions can be made. However, a conclusive number of case series and small studies clearly demonstrated that patients and rescuers will benefit from LUCAS™ and AutoPulse® CPR if BLS measures must be performed for a long period, i. e. in the case of pulmonary embolism, hypothermia, or CPR during transportation and coronary intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Gräsner JT, Meybohm P, Fischer M et al (2009) A national resuscitation registry of out-of-hospital cardiac arrest in Germany-A pilot study. Resuscitation 80: 199–203

    Article  PubMed  Google Scholar 

  2. Gräsner J-T, Messelken M, Scholz J, Fischer M (2006) Das Reanimationsregister der DGAI. Anasthesiol Intensivmed 47:630–631

    Google Scholar 

  3. Atwood C, Eisenberg MS, Herlitz J, Rea TD (2005) Incidence of EMS-treated out-of-hospital cardiac arrest in Europe. Resuscitation 67:75–80

    Article  PubMed  Google Scholar 

  4. Yakaitis RW, Ewy GA, Otto CW et al (1980) Influence of time and therapy on ventricular defibrillation in dogs. Crit Care Med 8:157–163

    Article  CAS  PubMed  Google Scholar 

  5. Palmer BS, Hadziahmetovic M, Veci T, Angelos MG (2004) Global ischemic duration and reperfusion function in the isolated perfused rat heart. Resuscitation 62:97–106

    Article  PubMed  Google Scholar 

  6. Handley AJ, Koster R, Monsieurs K et al (2005) European resuscitation council guidelines for resuscitation 2005 section 2. Adult basic life support and use of automated external defibrillators. Resuscitation 67(Suppl 1):7–23

    Article  Google Scholar 

  7. (n a) (2005) American heart association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 112:IV1–IV203

  8. Wik L, Kramer-Johansen J, Myklebust H et al (2005) Quality of cardiopulmonary resuscitation during out-of-hospital cardiac arrest. JAMA 293:299–304

    Article  CAS  PubMed  Google Scholar 

  9. Abella BS, Sandbo N, Vassilatos P et al (2005) Chest compression rates during cardiopulmonary resuscitation are suboptimal: a prospective study during in-hospital cardiac arrest. Circulation 111:428–434

    Article  PubMed  Google Scholar 

  10. Pernat A, Weil MH, Sun S, Tang W (2003) Stroke volumes and end-tidal carbon dioxide generated by precordial compression during ventricular fibrillation. Crit Care Med 31:1819–1823

    Article  PubMed  Google Scholar 

  11. Bartlett RL, Stewart NJ Jr, Raymond J et al (1984) Comparative study of three methods of resuscitation: closed-chest, open- chest manual and direct mechanical ventricular assistance. Ann Emerg Med 13:773–777

    Article  CAS  PubMed  Google Scholar 

  12. Fischer M, Dahmen A, Standop J et al (2002) Effects of hypertonic saline on myocardial blood flow in a porcine model of prolonged cardiac arrest. Resuscitation 54:269–280

    Article  CAS  PubMed  Google Scholar 

  13. Halperin H, Berger R, Chandra N et al (2000) Cardiopulmonary resuscitation with a hydraulic-pneumatic band. Crit Care Med 28(suppl):N203–N206

    Article  CAS  PubMed  Google Scholar 

  14. Halperin HR, Tsitlik JE, Gelfand M et al (1993) A preliminary study of cardiopulmonary resuscitation by circumferential compression of the chest with use of a pneumatic vest. N Engl J Med 329:762–768

    Article  CAS  PubMed  Google Scholar 

  15. Halperin HR, Guerci AD, Chandra N et al (1986) Vest inflation without simultaneous ventilation during cardiac arrest in dogs: improved survival from prolonged cardiopulmonary resuscitation. Circulation 74:1407–1415

    CAS  PubMed  Google Scholar 

  16. Mauer DK, Nolan J, Plaisance P et al (1999) Effect of active compression-decompression resuscitation (ACD-CPR) on survival: a combined analysis using individual patient data. Resuscitation 41:249–256

    Article  CAS  PubMed  Google Scholar 

  17. Skogvoll E, Wik L (1999) Active compression-decompression cardiopulmonary resuscitation: a population-based, prospective randomised clinical trial in out-of-hospital cardiac arrest. Resuscitation 42:163–172

    Article  CAS  PubMed  Google Scholar 

  18. Klintschar M, Darok M, Radner H (1998) Massive injury to the heart after attempted active compression-decompression cardiopulmonary resuscitation. Int J Legal Med 111:93–96

    Article  CAS  PubMed  Google Scholar 

  19. Plaisance P, Adnet F, Vicaut E et al (1997) Benefit of active compression-decompression cardiopulmonary resuscitation as a prehospital advanced cardiac life support: a randomized multicenter study. Circulation 95:955–961

    CAS  PubMed  Google Scholar 

  20. Panzer W, Bretthauer M, Klingler H et al (1996) ACD versus standard CPR in a prehospital setting. Resuscitation 33:117–124

    Article  CAS  PubMed  Google Scholar 

  21. Mauer D, Schneider T, Dick W et al (1996) Active compression-decompression resuscitation: a prospective, randomized study in a two-tiered EMS system with physicians in the field. Resuscitation 33:125–134

    Article  CAS  PubMed  Google Scholar 

  22. Stiell IG, Hebert PC, Wells GA et al (1996) The Ontario trial of active compression-decompression cardiopulmonary resuscitation for in-hospital and prehospital cardiac arrest. JAMA 275:1417–1423

    Article  CAS  PubMed  Google Scholar 

  23. Luiz T, Ellinger K, Denz C (1996) Active compression-decompression cardiopulmonary resuscitation does not improve survival in patients with prehospital cardiac arrest in a physician-manned emergency medical system. J Cardiothorac Vasc Anesth 10:178–186

    Article  CAS  PubMed  Google Scholar 

  24. Schwab TM, Callaham ML, Madsen CD, Utecht TA (1995) A randomized clinical trial of active compression-decompression CPR vs standard CPR in out-of-hospital cardiac arrest in two cities. JAMA 273:1261–1268

    Article  CAS  PubMed  Google Scholar 

  25. Cohen T, Goldner B, Maccaro P et al (1993) A comparison of active compression-decompression cardiopulmonary resuscitation with standard cardiopulmonary resuscitation for cardiac arrests occurring in the hospital. N Engl J Med 329:1918–1921

    Article  CAS  PubMed  Google Scholar 

  26. Plaisance P, Lurie KG, Vicaut E et al (2004) Evaluation of an impedance threshold device in patients receiving active compression-decompression cardiopulmonary resuscitation for out of hospital cardiac arrest. Resuscitation 61:265–271

    Article  PubMed  Google Scholar 

  27. Wolcke BB, Mauer DK, Schoefmann MF et al (2003) Comparison of standard cardiopulmonary resuscitation versus the combination of active compression-decompression cardiopulmonary resuscitation and an inspiratory impedance threshold device for out-of-hospital cardiac arrest. Circulation 108:2201–2205

    Article  PubMed  Google Scholar 

  28. Pfeiffer TE, Klaus (2009) Vergleich von Thoraxkompressionen einer manuellen kardiopulmonalen Reanimation mit einer Reanimation mithilfe des mechanischen Gerätes ANIMAX am Simulator. Dissertation Ruprecht-Karls-Universität Heidelberg

  29. Plappert T, Behrendt I, Schmitt C, Greim CA (2008) Mechanical device enables single first-responders to be as effective as trained BLS-Teams. EUSEM Abstract

  30. Axelsson C, Nestin J, Svensson L et al (2006) Clinical consequences of the introduction of mechanical chest compression in the EMS system for treatment of out-of-hospital cardiac arrest-A pilot study. Resuscitation 71:47–55

    Article  PubMed  Google Scholar 

  31. Smekal D, Johansson J, Huzevka T, Rubertsson S (2009) No difference in autopsy detected injuries in cardiac arrest patients treated with manual chest compressions compared with mechanical compressions with the LUCAS device – a pilot study. Resuscitation 80:1104–1107

    Article  PubMed  Google Scholar 

  32. Larsen AI, Hjornevik AS, Ellingsen CL, Nilsen DW (2007) Cardiac arrest with continuous mechanical chest compression during percutaneous coronary intervention. A report on the use of the LUCAS device. Resuscitation 75:454–459

    Article  PubMed  Google Scholar 

  33. Steen S, Liao Q, Pierre L et al (2002) Evaluation of LUCAS, a new device for automatic mechanical compression and active decompression resuscitation. Resuscitation 55:285–299

    Article  PubMed  Google Scholar 

  34. Wagner H, Terkelsen CJ, Friberg H et al (2010) Cardiac arrest in the catheterisation laboratory: A 5-year experience of using mechanical chest compressions to facilitate PCI during prolonged resuscitation efforts. Resuscitation 81:383–387

    Article  PubMed  Google Scholar 

  35. Bonnemeier H, Olivecrona G, Simonis G et al (2009) Automated continuous chest compression for in-hospital cardiopulmonary resuscitation of patients with pulseless electrical activity: a report of five cases. Int J Cardiol 136:e39–e50

    Article  PubMed  Google Scholar 

  36. Steen S, Liao Q, Pierre L et al (2004) Continuous intratracheal insufflation of oxygen improves the efficacy of mechanical chest compression-active decompression CPR. Resuscitation 62:219–227

    Article  PubMed  Google Scholar 

  37. Deakin CD, O’Neill JF, Tabor T (2007) Does compression-only cardiopulmonary resuscitation generate adequate passive ventilation during cardiac arrest? Resuscitation 75:53–59

    Article  PubMed  Google Scholar 

  38. Casner M, Andersen D, Isaacs SM (2005) The impact of a new CPR assist device on rate of return of spontaneous circulation in out-of-hospital cardiac arrest. Prehosp Emerg Care 9:61–67

    Article  PubMed  Google Scholar 

  39. Halperin HR, Paradis N, Ornato JP et al (2004) Cardiopulmonary resuscitation with a novel chest compression device in a porcine model of cardiac arrest: improved hemodynamics and mechanisms. J Am Coll Cardiol 44:2214–2220

    Article  PubMed  Google Scholar 

  40. Timerman S, Cardoso LF, Ramires JA, Halperin H (2004) Improved hemodynamic performance with a novel chest compression device during treatment of in-hospital cardiac arrest. Resuscitation 61:273–280

    Article  PubMed  Google Scholar 

  41. Ong ME, Ornato JP, Edwards DP et al (2006) Use of an automated, load-distributing band chest compression device for out-of-hospital cardiac arrest resuscitation. JAMA 295:2629–2637

    Article  CAS  PubMed  Google Scholar 

  42. Hallstrom A, Rea TD, Sayre MR et al (2006) Manual chest compression vs use of an automated chest compression device during resuscitation following out-of-hospital cardiac arrest: a randomized trial. JAMA 295:2620–2628

    Article  CAS  PubMed  Google Scholar 

  43. Risom M, Jorgensen H, Rasmussen LS, Sorensen AM (2009) Resuscitation, prolonged cardiac arrest and an automated chest compression device. J Emerg Med

  44. Morozumi J, Sakurai E, Matsuno N et al (2009) Successful kidney transplantation from donation after cardiac death using a load-distributing-band chest compression device during long warm ischemic time. Resuscitation 80:278–280

    Article  PubMed  Google Scholar 

  45. Schewe JC, Heister U, Hoeft A, Krep H (2008) Emergency physician and autopulse – a good duo in preclinical emergency services?: case example and report on experience. Anaesthesist 57:582–588

    Article  PubMed  Google Scholar 

  46. Krep H, Mamier M, Breil M et al (2007) Out-of-hospital cardiopulmonary resuscitation with the autopulse system: a prospective observational study with a new load-distributing band chest compression device. Resuscitation 73:86–95

    Article  PubMed  Google Scholar 

  47. Hoke RS, Chamberlain D (2004) Skeletal chest injuries secondary to cardiopulmonary resuscitation. Resuscitation 63:327–338

    Article  PubMed  Google Scholar 

  48. Adams HA, Schmitz CS, Block G, Schlichting C (1995) Intra-abdominal bleeding after myocardial infarction with cardiopulmonary resuscitation and thrombolytic therapy. Anaesthesist 44:585–589

    Article  CAS  PubMed  Google Scholar 

  49. Kern KB, Carter AB, Showen RL et al (1986) CPR-induced trauma: comparison of three manual methods in an experimental model. Ann Emerg Med 15:674–679

    Article  CAS  PubMed  Google Scholar 

  50. Nolan JP, Deakin CD, Soar J et al (2005) European resuscitation council guidelines for resuscitation 2005 section 4. Adult advanced life support. Resuscitation 67(Suppl 1):S39–S86

    Article  PubMed  Google Scholar 

  51. Rabl W, Baubin M, Broinger G, Scheithauer R (1996) Serious complications from active compression-decompression cardiopulmonary resuscitation. Int J Legal Med 109:84–89

    Article  CAS  PubMed  Google Scholar 

  52. Wind J, Bekkers SC, Hooren LJ van, Heurn LW van (2009) Extensive injury after use of a mechanical cardiopulmonary resuscitation device. Am J Emerg Med 27:1017 e1–e2

    Article  PubMed  Google Scholar 

  53. Hart AP, Azar VJ, Hart KR, Stephens BG (2005) Autopsy artifact created by the revivant autopulse resuscitation device. J Forensic Sci 50:164–168

    PubMed  Google Scholar 

  54. Wik L, Hansen TB, Fylling F et al (2003) Delaying defibrillation to give basic cardiopulmonary resuscitation to patients with out-of-hospital ventricular fibrillation: a randomized trial. JAMA 289:1389–1395

    Article  PubMed  Google Scholar 

  55. Deakin CD, Nolan JP (2005) European resuscitation council guidelines for resuscitation 2005 section 3. Electrical therapies: Automated external defibrillators, defibrillation, cardioversion and pacing. Resuscitation 67(Suppl 1):25–37

    Article  Google Scholar 

  56. Cohen TJ, Tucker KJ, Lurie KG et al (1992) Active compression-decompression. A new method of cardiopulmonary resuscitation. Cardiopulmonary resuscitation working group. JAMA 267:2916–2923

    Article  CAS  PubMed  Google Scholar 

  57. Lindner KH, Pfenninger EG, Lurie KG et al (1993) Effects of active compression-decompression resuscitation on myocardial and cerebral blood flow in pigs. Circulation 88:1254–1263

    CAS  PubMed  Google Scholar 

  58. Orliaguet GA, Carli PA, Rozenberg A et al (1995) End-tidal carbon dioxide during out-of-hospital cardiac arrest resuscitation: comparison of active compression-decompression and standard CPR. Ann Emerg Med 25:48–51

    Article  CAS  PubMed  Google Scholar 

  59. Chang MW, Coffeen P, Lurie KG et al (1994) Active compression-decompression CPR improves vital organ perfusion in a dog model of ventricular fibrillation. Chest 106:1250–1259

    Article  CAS  PubMed  Google Scholar 

  60. Shultz JJ, Coffeen P, Sweeney M et al (1994) Evaluation of standard and active compression-decompression CPR in an acute human model of ventricular fibrillation. Circulation 89:684–693

    CAS  PubMed  Google Scholar 

  61. Lurie KG, Shultz JJ, Callaham ML et al (1994) Evaluation of active compression-decompression CPR in victims of out-of- hospital cardiac arrest. JAMA 271:1405–1411

    Article  CAS  PubMed  Google Scholar 

  62. Axelsson C, Karlsson T, Axelsson AB, Herlitz J (2009) Mechanical active compression-decompression cardiopulmonary resuscitation (ACD-CPR) versus manual CPR according to pressure of end tidal carbon dioxide (P(ET)CO2) during CPR in out-of-hospital cardiac arrest (OHCA). Resuscitation 80:1099–1103

    Article  CAS  PubMed  Google Scholar 

  63. Shultz JJ, Mianulli MJ, Gisch TM et al (1995) Comparison of exertion required to perform standard and active compression-decompression cardiopulmonary resuscitation. Resuscitation 29:23–31

    Article  CAS  PubMed  Google Scholar 

  64. Iwami T, Nichol G, Hiraide A et al (2009) Continuous improvements in „chain of survival“ increased survival after out-of-hospital cardiac arrests: a large-scale population-based study. Circulation 119:728–734

    Article  PubMed  Google Scholar 

  65. Steinmetz J, Barnung S, Nielsen SL et al (2008) Improved survival after an out-of-hospital cardiac arrest using new guidelines. Acta Anaesthesiol Scand 52:908–913

    Article  CAS  PubMed  Google Scholar 

  66. Werling M, Thoren AB, Axelsson C, Herlitz J (2007) Treatment and outcome in post-resuscitation care after out-of-hospital cardiac arrest when a modern therapeutic approach was introduced. Resuscitation 73: 40–45

    Article  CAS  PubMed  Google Scholar 

  67. Abella BS, Edelson DP, Kim S et al (2007) CPR quality improvement during in-hospital cardiac arrest using a real-time audiovisual feedback system. Resuscitation 73:54–61

    Article  PubMed  Google Scholar 

  68. Sunde K, Pytte M, Jacobsen D et al (2007) Implementation of a standardised treatment protocol for post resuscitation care after out-of-hospital cardiac arrest. Resuscitation 73:29–39

    Article  PubMed  Google Scholar 

  69. Olasveengen TM, Sunde K, Brunborg C et al (2009) Intravenous drug administration during out-of-hospital cardiac arrest: a randomized trial. JAMA 302:2222–2229

    Article  PubMed  Google Scholar 

  70. Nolan JP, Soar J (2008) Post resuscitation care – time for a care bundle? Resuscitation 76:161–162

    Article  PubMed  Google Scholar 

  71. Nolan JP, Neumar RW, Adrie C et al (2009) Post-cardiac arrest syndrome: Epidemiology, pathophysiology, treatment and prognostication: A scientific statement from the International Liaison Committee on Resuscitation; the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative and Critical Care; the Council on Clinical Cardiology; the Council on Stroke (Part 1). Int Emerg Nurs 17:203–225

    Article  PubMed  Google Scholar 

  72. Fischer M, Böttiger BW, Popov-Cenic S, Hossmann KA (1996) Thrombolysis using plasminogen activator and heparin reduces cerebral no-reflow after resuscitation from cardiac arrest: an experimental study in the cat. Intensive Care Med 22:1214–1223

    Article  CAS  PubMed  Google Scholar 

  73. Fischer M, Hossmann KA (1996) Volume expansion during cardiopulmonary resuscitation reduces cerebral no-reflow. Resuscitation 32:227–240

    Article  CAS  PubMed  Google Scholar 

  74. Fischer M, Hossmann KA (1995) No-reflow after cardiac arrest. Intensive Care Med 21:132–141

    Article  CAS  PubMed  Google Scholar 

  75. Gesundheitsberichtserstattung des Bundes; URL: http://www.gbe-bund.de

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fischer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, M., Ihli, M. & Messelken, M. Mechanische Reanimationsgeräte. Notfall Rettungsmed 13, 189–196 (2010). https://doi.org/10.1007/s10049-009-1277-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10049-009-1277-z

Schlüsselwörter

Keywords

Navigation