Skip to main content
Log in

The use of a numerical model to simulate the cavo-pulmonary assistance in Fontan circulation: a preliminary verification

  • Original Article
  • Artificial Heart (Basic)
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

The lack of an established experience on the use of VAD for the cavo-pulmonary assistance leads to the need of dedicated VADs development and animal experiments. A dedicated numerical model could support clinical and experimental strategies design and new VADs testing. The aim of this work is to perform a preliminary verification of a lumped parameter model of the cardiovascular system to simulate Fontan physiology and the effect of cavo-pulmonary assistance. Literature data of 4 pigs were used to simulate animals’ baseline, and then the model was tested in simulating Fontan circulation and cavo-pulmonary-assisted condition comparing the simulation outcome (Sim) with measured literature data (Me). The results show that the numerical model can well reproduce experimental data in all three conditions (baseline, Fontan and assisted Fontan) [cardiac output (l/min): Me = 2.8 ± 1.7, Sim = 2.8 ± 1.8; ejection fraction (%): Me = 57 ± 17, Sim = 54 ± 17; arterial systemic pressure (mmHg): Me = 41.8 ± 18.6, Sim = 43.8 ± 18.1; pulmonary arterial pressure (mmHg): Me = 15.4 ± 8.9, Sim = 17.7 ± 9.9; caval pressure (mmHg): Me = 6.8 ± 4.1, Sim = 7 ± 4.6]. Systolic elastance, arterial systemic and arterial pulmonary resistances increase (10, 69, and 100 %) passing from the biventricular circulation to the Fontan physiology and then decrease (21, 39, and 50 %) once the VAD was implanted. The ventricular external work decreases (71 %) passing from the biventricular circulation to the Fontan physiology and it increases three times after the VAD implantation in parallel with the VAD power consumption. A numerical model could support clinicians in an innovative and challenging field as the use of VAD to assist the Fontan physiology and it could be helpful to personalize the VAD insertion on the base of ventricular systo-diastolic function, circulatory parameters and energetic variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rossano JW, Woods RK, Berger S, Gaynor JW, Ghanayem N, Morales DL, Ravishankar C, Mitchell ME, Shah TK, Mahr C, Tweddell JS, Adachi I, Zangwill S, Wearden PD, Icenogle TB, Jaquiss RD, Rychik J. Mechanical support as failure intervention in patients with cavopulmonary a hunts (MFICS): rationale and aims of a new registry of mechanical circulatory support in single ventricle patients. Congenit Heart Dis. 2013;8(3):182–6.

    Article  PubMed  Google Scholar 

  2. VanderPluym C, Urschel S, Buchholz H. Advanced therapies for congenital heart disease: ventricular assist devices and heart transplantation. Can J Cardiol. 2013;29:796–802.

    Article  PubMed  Google Scholar 

  3. Wang D, Plunkett M, Gao G, Zhou X, Ballard-Croft C, Reda H, Zwischenberger JB. A practical and less invasive total cavopulmonary connection in sheep model. ASAIO J. 2014;60:178–82.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Haggerty CM, Fynn-Thompson F, McElhinney DB, Valente AM, Saikrishnan N, Del Nido PJ, Yoganathan AP. Experimental and numeric investigation of Impella pumps as cavopulmonary assistance for a failing Fontan. J Thorac Cardiovasc Surg. 2012;144:563–9.

    Article  PubMed  Google Scholar 

  5. Boni L, Sasaki T, Ferrier WT, Yeung JT, Reichenbach SH, Riemer RK, Reinhartz O. Challenges in long term mechanical support of fontan circulation in sheep. ASAIO J. 2012;58:60–4.

    Article  PubMed  Google Scholar 

  6. Tsuda S, Sasaki T, Maeda K, Riemer RK, Reichenbach SH, Reinhartz O. Recovery during mid-term mechanical support of Fontan circulation in sheep. ASAIO J. 2009;55:406–11.

    Article  PubMed  Google Scholar 

  7. Derk G, Laks H, Biniwale R, Patel S, De LaCruz K, Mazor E, Williams R, Valdovinos J, Levi DS, Reardon L, Aboulhosn J. Novel techniques of mechanical circulatory support for the right heart and Fontan circulation. Int J Cardiol. 2014;176(3):828–32.

    Article  PubMed  Google Scholar 

  8. Giridharan GA, Ising M, Sobieski MA, Koenig SC, Chen J, Frankel S, Rodefeld MD. Cavopulmonary assist for the failing fontan circulation: impact of ventricular function on mechanical support strategy. ASAIO J. 2014;60:707–15.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sinha P, Deutsch N, Ratnayaka K, Lederman R, He D, Nuszkowski M, Montague E, Mikesell G, Ishibashi N, Zurakowski D, Jonas R. Effect of mechanical assistance of systemic ventricle in single ventricle circulation with cavopulmonary connection. J Thorac Cardiovasc Surg. 2014;147:1271–5.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Merklinger SL, Honjo O, Al-Radi OO, Poe J, Wang J, Oka N, Van Arsdell GS. Primary in-series palliation of hypoplastic left heart syndrome with mechanical lung assist in neonatal pigs. ASAIO J. 2009;55:620–5.

    Article  PubMed  Google Scholar 

  11. Pekkan K, Frakes D, De Zelicourt D, Lucas CW, Parks WJ, Yoganathan AP. Coupling pediatric ventricle assist devices to the Fontan circulation: simulations with a lumped parameter model. ASAIO J. 2005;51:618–28.

    Article  PubMed  Google Scholar 

  12. Valdovinos J, Shkolyar E, Carman GP, Levi DS. In vitro evaluation of an external compression device for fontan mechanical assistance. Artif Organs. 2014;38(3):199–207.

    Article  PubMed  Google Scholar 

  13. Yamada A, Shiraishi Y, Miura H, Yambe T, Omran MH, Shiga T, Tsuboko Y, Homma D, Yamagishi M. Peristaltic hemodynamics of a new pediatric circulatory assist system for Fontan circulation using shape memory alloy fibers. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:683–6.

    CAS  PubMed  Google Scholar 

  14. Throckmorton AL, Lopez-Isaza S, Moskowitz W. Dual pump support in the inferior and superior vena cavae of a patient specific fontan physiology. Artif Organs. 2013;37(6):513–22.

    Article  PubMed  Google Scholar 

  15. Di Molfetta A, Amodeo A, Fresiello L, Trivella MG, Iacobelli R, Pilati M, Ferrari G. Simulation of ventricular, cavo-pulmonary, and biventricular ventricular assist devices in failing Fontan. Artif Organs. 2015;39(7):550–8.

    Article  PubMed  Google Scholar 

  16. Sagawa K, Maughan L, Suga H, Sunagawa H. Cardiac contraction and the Pressure-Volume relationships. New York: Oxford University Press; 1988.

    Google Scholar 

  17. Di Molfetta A, Santini L, Forleo GB, Minni V, Mafhouz K, Della Rocca DG, Fresiello L, Romeo F, Ferrari G. Towards a personalized and dynamic CRT-D. A computational cardiovascular model dedicated to therapy optimization. Methods Inf Med. 2012;51(6):495–506.

    Article  PubMed  Google Scholar 

  18. Magder S. Starling Resistor versus compliance. Which explains the Zero-Flow Pressure of a dynamic arterial pressure-flow relation? Circ Res. 1990;67(1):209–20.

    Article  CAS  PubMed  Google Scholar 

  19. Kilik A, Nolan TDC, Li T, Yankey GK, Prastein DJ, Cheng G, Jarvik RK, Wu ZJ, Griffith BP. Early in vivo experience with the Pediatric Jarvik 2000 Heart. ASAIO J. 2007;53(3):374–8.

    Article  Google Scholar 

  20. http://parameterz.blogspot.it.

  21. Di Molfetta A, Jacobs S, Fresiello L, Verbelen T, Trivella MG, Meyns B, Ferrari G. Simulation of apical and atrio-aortic VAD in patients with transposition or congenitally corrected transposition of the great arteries. Int J Artif Organs. 2014;37(1):58–70.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by CONAD. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arianna Di Molfetta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Molfetta, A., Amodeo, A., Fresiello, L. et al. The use of a numerical model to simulate the cavo-pulmonary assistance in Fontan circulation: a preliminary verification. J Artif Organs 19, 105–113 (2016). https://doi.org/10.1007/s10047-015-0874-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-015-0874-5

Keywords

Navigation