Skip to main content
Log in

Biocompatibility and durability of Teflon-coated platinum–iridium wires implanted in the vitreous cavity

  • Original Article
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

Teflon-coated platinum–iridium wires are placed in the vitreous as electrodes in artificial vision systems. The purpose of this study was to determine whether these wires have toxicity in the vitreous cavity, and to examine the durability of their coating when grasped by forceps. Rabbits were implanted with platinum–iridium wires that were 50 μm in diameter and coated with Teflon to a total diameter of 68 or 100 μm. To examine the biocompatibility, electroretinograms (ERGs) and fluorescein angiography (FA) were performed before and 1 week, 1, 3, and 6 months after the implantation of the electrode. After 6 months, the eyes were histologically examined with light microscopy. To check the durability, the surface of a coated wire was examined with scanning electron microscopy after grasping with different types of forceps. At all times after the implantation the amplitudes and implicit times of the ERGs recorded were not significantly different from those recorded before the implantation (P > 0.05). FA showed no notable change during the follow-up periods. Histological studies showed that the retinas were intact after 6 months of implantation. There was no damage to the Teflon-coated wire after grasping the wire with forceps with silicon-coated tips, while surface damage of the Teflon that did not extend to the platinum–iridium wire was found when grasped by vitreoretinal forceps. We conclude that Teflon-coated platinum–iridium wire is highly biocompatible in the vitreous for at least 6 months. Wires should be handled with vitreoretinal forceps with silicone-coated tips in order to avoid causing damage during wire manipulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chow AY, Chow VY, Packo KH, Pollack JS, Peyman GA, Schuchard R. The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. Arch Ophthalmol. 2004;122:460–9.

    Article  PubMed  Google Scholar 

  2. Humayun MS, Weiland JD, Fujii GY, Greenberg R, Williamson R, Little J, Mech B, Cimmarusti V, Van Boemel G, Dagnelie G, de Juan E. Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vis Res. 2003;43:2573–81.

    Article  PubMed  Google Scholar 

  3. Rizzo JF 3rd, Wyatt J, Loewenstein J, Kelly S, Shire D. Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays. Invest Ophthalmol Vis Sci. 2003;44:5355–61.

    Article  PubMed  Google Scholar 

  4. Walter P, Heimann K. Evoked cortical potentials after electrical stimulation of the inner retina in rabbits. Graefes Arch Clin Exp Ophthalmol. 2000;238:315–8.

    Article  PubMed  CAS  Google Scholar 

  5. Zrenner E. The subretinal implant: can microphotodiode arrays replace degenerated retinal photoreceptors to restore vision? Ophthalmologica. 2002;216:8–20.

    Article  PubMed  Google Scholar 

  6. Veraart C, Raftopoulos C, Mortimer JT, Delbeke J, Pins D, Michaux G, Vanlierde A, Parrini S, Wanet-Defalque MC. Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode. Brain Res. 1998;813:181–6.

    Article  PubMed  CAS  Google Scholar 

  7. Seo JM, Kim SJ, Chung H. Biocompatibility of polyimide microelectrode array for retinal stimulation. J Mater Sci Eng C. 2004;24:185–9.

    Article  Google Scholar 

  8. Gerding H. A new approach towards a minimal invasive retina implant. J Neural Eng. 2007;4:S30–7.

    Article  PubMed  CAS  Google Scholar 

  9. Li L, Cao P, Sun M, Chai X, Wu K, Xu X, Li X, Ren Q. Intraorbital optic nerve stimulation with penetrating electrodes: in vivo electrophysiology study in rabbits. Graefes Arch Clin Exp Ophthalmol. 2009;247:349–61.

    Article  PubMed  Google Scholar 

  10. Sakaguchi H, Fujikado T, Fang X, Kanda H, Osanai M, Nakauchi K, Ikuno Y, Kamei M, Yagi T, Nishimura S, Ohji M, Yagi T, Tano Y. Transretinal electrical stimulation with a suprachoroidal multichannel electrode in rabbit eyes. Jpn J Ophthalmol. 2004;48:256–61.

    Article  PubMed  Google Scholar 

  11. Nakauchi K, Fujikado T, Kanda H, Morimoto T, Choi JS, Ikuno Y, Sakaguchi H, Kamei M, Ohji M, Yagi T, Nishimura S, Sawai H, Fukuda Y, Tano Y. Transretinal electrical stimulation by an intrascleral multichannel electrode array in rabbit eyes. Graefes Arch Clin Exp Ophthalmol. 2005;243:169–74.

    Article  PubMed  Google Scholar 

  12. Kanda H, Morimoto T, Fujikado T, Tano Y, Fukuda Y, Sawai H. Electrophysiological studies of the feasibility of suprachoroidal-transretinal stimulation for artificial vision in normal and RCS rats. Invest Ophthalmol Vis Sci. 2004;45:560–6.

    Article  PubMed  Google Scholar 

  13. Fujikado T, Morimoto T, Kanda H, Kusaka S, Nakauchi K, Ozawa M, Matsushita K, Sakaguchi H, Ikuno Y, Kamei M, Tano Y. Evaluation of phosphenes elicited by extraocular stimulation in normals and by suprachoroidal-transretinal stimulation in patients with retinitis pigmentosa. Graefes Arch Clin Exp Ophthalmol. 2007;245:1411–9.

    Article  PubMed  Google Scholar 

  14. Nishida K, Kamei M, Kondo M, Sakaguchi H, Suzuki M, Fujikado T, Tano Y. Efficacy of suprachoroidal-transretinal stimulation in a rabbit model of retinal degeneration. Invest Ophthalmol Vis Sci. 2010;51:2263–8.

    Article  PubMed  Google Scholar 

  15. Sakaguchi H, Fujikado T, Kanda H, Osanai M, Fang X, Nakauchi K, Ikuno Y, Kamei M, Ohji M, Yagi T, Tano Y. Electrical stimulation with a needle-type electrode inserted into the optic nerve in rabbit eyes. Jpn J Ophthalmol. 2004;48:552–7.

    Article  PubMed  Google Scholar 

  16. Fang X, Sakaguchi H, Fujikado T, Osanai M, Ikuno Y, Kamei M, Ohji M, Yagi T, Tano Y. Electrophysiological and histological studies of chronically implanted intrapapillary microelectrodes in rabbit eyes. Graefes Arch Clin Exp Ophthalmol. 2006;244:364–75.

    Article  PubMed  Google Scholar 

  17. Sakaguchi H, Kamei M, Fujikado T, Yonezawa E, Ozawa M, Gonzalez C, Gonzalez O, Mercado H, Tano Y. Artificial vision by direct optic nerve electrode (AV-DONE) implantation in a blind patient with retinitis pigmentosa. J Artif Organs. 2009;12:206–9.

    Article  PubMed  Google Scholar 

  18. Inoue HK, Kobayashi S, Ohbayashi K, Kohga H, Nakamura M. Treatment and prevention of tethered and retethered spinal cord using a Gore-Tex surgical membrane. J Neurosurg. 1994;80:689–93.

    Article  PubMed  CAS  Google Scholar 

  19. Matsumoto H, Hasegawa T, Fuse K, Yamamoto M, Saigusa M. A new vascular prosthesis for a small caliber artery. Surgery. 1973;74:519–23.

    PubMed  CAS  Google Scholar 

  20. Griepp RB, Stinson EB, Hollingsworth JF, Buehler D. Prosthetic replacement of the aortic arch. J Thorac Cardiovasc Surg. 1975;70:1051–63.

    PubMed  CAS  Google Scholar 

  21. Barber JC, Feaster F, Priour D. The acceptance of a vitreous carbon alloplastic material, Proplast, in the rabbit eye. Invest Ophthalmol Vis Sci. 1980;19:182–91.

    PubMed  CAS  Google Scholar 

  22. Jacob T, LaCour OJ, Burgoyne CF, LaFleur PK, Duzman E. Expanded polytetrafluoroethylene reinforcement material in glaucoma drain surgery. J Glaucoma. 2001;10:115–20.

    Article  PubMed  CAS  Google Scholar 

  23. Mauriello JA Jr. Inferior rectus muscle entrapped by Teflon implant after orbital floor fracture repair. Ophthalmic Plast Reconstr Surg. 1990;6:218–20.

    Article  Google Scholar 

  24. Langmann A, Lindner S, Wackernagel W, Koch M, Horantner R. Polytetrafluoroethylene (Goretex) for muscle elongation in the surgical treatment of strabismus with restricted motility. Acta Ophthalmol Scand. 2006;84:250–3.

    Article  PubMed  Google Scholar 

  25. Ding T, Sun J, Zhang P. Study on MCP-1 related to inflammation induced by biomaterials. Biomed Mater. 2009;4:35005.

    Article  Google Scholar 

Download references

Acknowledgments

The authors greatly appreciate the leadership of the late Professor Yasuo Tano, Chairman of Department of Ophthalmology, Osaka University Graduate School of Medicine, who planned and enthusiastically guided the Artificial Vision project in Japan. A health sciences research grant and a grant-in-aid for scientific research from the Ministry of Health, Labor and Welfare, Japan.

Conflict of interest

K. Nishida, none; H. Sakaguchi, none; P. Xie, none; Y. Terasawa, NIDEK Co., Ltd.; M. Ozawa, NIDEK Co., Ltd.; M. Kamei, none; K. Nishida, none.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motohiro Kamei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishida, K., Sakaguchi, H., Xie, P. et al. Biocompatibility and durability of Teflon-coated platinum–iridium wires implanted in the vitreous cavity. J Artif Organs 14, 357–363 (2011). https://doi.org/10.1007/s10047-011-0591-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-011-0591-7

Keywords

Navigation