Skip to main content
Log in

Performance evaluation of praseodymium doped fiber amplifiers

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

In this paper, we report the performance evaluation of praseodymium doped fiber amplifier (PDFA) operating in 1.25–1.35 μm band of wavelengths based on theoretical simulation. The performance of the PDFA is evaluated by considering an optimized length of Pr\(^{3+}\) doped fiber, concentration of Pr\(^{3+}\) ions and pump power. Moreover, the impact of input signal wavelength on gain, amplified spontaneous emission (ASE) noise and noise figure (NF) of the amplifier is also investigated. A small signal peak gain of around 22.7 dB is achieved at 1.3 μm for Pr\(^{3+}\) doped fiber having short length of 15.7 m at an optimized pump power of 300 mW. A minimum NF of 4 dB is observed at 1.284 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Mirza, J., Imtiaz, W.A., Aljohani, A.J., Atieh, A., Ghafoor, S.: Design and analysis of a 32x5 gbps passive optical network employing fso based protection at the distribution level. Alex. Eng. J. 59(6), 4621–4631 (2020)

    Article  Google Scholar 

  2. Chen, Y., Li, J., Zhou, P., Zhu, P., Tian, Y., Wu, Z., Zhu, J., Liu, K., Ge, D., Chen, J., et al.: Mdm-tdm pon utilizing self-coherent detection-based olt and rsoa-based onu for high power budget. IEEE Photonics J. 8(3), 1–7 (2016)

    Google Scholar 

  3. Wdm lightwave systems.: https://www.fiberoptics4sale.com/blogs/wave-optics/wdm-lightwave-systems (2021)

  4. Paul, M.C., Dhar, A., Das, S., Pal, M., Bhadra, S.K., Markom, A., Rosli, N., Hamzah, A., Ahmad, H., Harun, S.: Enhanced erbium-zirconia-yttria-aluminum co-doped fiber amplifier. IEEE Photonics J. 7(5), 1–7 (2015)

    Article  Google Scholar 

  5. Abedin, K.S., Fini, J.M., Thierry, T.F., Zhu, B., Yan, M.F., Bansal, L., Dimarcello, F.V., Monberg, E.M., DiGiovanni, D.J.: Seven-core erbium-doped double-clad fiber amplifier pumped simultaneously by side-coupled multimode fiber. Opt. Lett. 39(4), 993–996 (2014)

    Article  ADS  Google Scholar 

  6. Sliwinska, D., Kaczmarek, P., Sobon, G., Abramski, K.M.: Double-seeding of er/yb co-doped fiber amplifiers for controlling of yb-ase. J. Lightwave Technol. 31(21), 3381–3386 (2013)

    Article  ADS  Google Scholar 

  7. Amin, M.Z., Qureshi, K.K., Hossain, M.M.: Doping radius effects on an erbium-doped fiber amplifier. Chin. Opt. Lett. 17(1), 010602 (2019)

    Article  ADS  Google Scholar 

  8. Senior, J.M., Jamro, M.Y.: Optical Fiber Communications: Principles and Practice. Pearson Education, London (2009)

    Google Scholar 

  9. Tawarayama, H., Ishikawa, E., Yamanaka, K., Itoh, K., Okada, K., Aoki, H., Yanagita, H., Matsuoka, Y., Toratani, H.: Optical amplification at 1.3 \(\mu\)m in a praseodymium-doped sulfide-glass fiber. J. Am. Ceram. Soc. 83(4), 792–796 (2000)

    Article  Google Scholar 

  10. Berkdemir, C., Özsoy, S.  Modelling consideration of praseodymium-doped fiber amplifiers for 1.3 \(\mu\)m wavelength applications. Opt. Commun. 269(1), 102–106 (2007)

    Article  ADS  Google Scholar 

  11. Mukhtar, S., Aliyu, K.N., Qureshi, K.K.: Performance evaluation of er3+/yb3+ codoped fiber amplifier. Microw. Opt. Technol. Lett. 62(6), 2243–2247 (2020)

    Article  Google Scholar 

  12. Jiang, C.: Modeling and gain properties of er 3+ and pr 3+ codoped fiber amplifier for 1.3 and 1.5 \(\mu\)m windows. JOSA B 26(5), 1049–1056 (2009)

    Article  ADS  Google Scholar 

  13. Mukhtar, S., Aliyu, K.N., Magam, M.G., Qureshi, K.K.: Theoretical analysis of thulium-doped fiber amplifier based on in-band pumping scheme. Microw. Opt. Technol. Lett. 63(4), 1309–13 (2020)

    Article  Google Scholar 

  14. Li, Z., Heidt, A., Daniel, J., Jung, Y., Alam, S., Richardson, D.J.: Thulium-doped fiber amplifier for optical communications at 2 \(\mu\)m. Opt. Exp. 21(8), 9289–9297 (2013)

    Article  ADS  Google Scholar 

  15. Khamis, M.A., Ennser, K.: Theoretical model of a thulium-doped fiber amplifier pumped at 1570 nm and 793 nm in the presence of cross relaxation. J. Lightwave Technol. 34(24), 5675–5681 (2016)

    Article  ADS  Google Scholar 

  16. Husein, A.H.M., El-Nahal, F.I.: Noise figure and gain temperature dependent of praseodymium-doped fiber amplifier by using rate equations. Opt. Commun. 283(3), 409–413 (2010)

    Article  ADS  Google Scholar 

  17. Morin, V., Taufflieb, E.: High output-power praseodymium-doped fiber amplifier single-pumped at 1030 nm: analysis and results. IEEE J. Sel. Top. Quantum Electron. 3(4), 1112–1118 (1997)

    Article  ADS  Google Scholar 

  18. Schimmel, R., van de Sluis, H., Jonker, R., de Waardt, H.: Characterisation and modelling of praseodymium doped fibre amplifiers. In: 6th Annual symposium of the IEEE/LEOS benelux chapter. IEEE/LEOS, pp 133–136 (2001)

  19. Anashkina, E.A., Kim, A.V.: Numerical simulation of ultrashort mid-ir pulse amplification in praseodymium-doped chalcogenide fibers. J. Lightwave Technol. 35(24), 5397–5403 (2017)

    Article  ADS  Google Scholar 

  20. Shen, M., Furniss, D., Tang, Z., Barny, E., Sojka, L., Sujecki, S., Benson, T.M., Seddon, A.B.: Modeling of resonantly pumped mid-infrared pr 3+-doped chalcogenide fiber amplifier with different pumping schemes. Opt. Express 26(18), 23641–23660 (2018)

    Article  ADS  Google Scholar 

  21. Shen, L., Chen, B., Lin, H., Pun, E.: Praseodymium ion doped phosphate glasses for integrated broadband ion-exchanged waveguide amplifier. J. Alloys Compd. 622, 1093–1097 (2015)

    Article  Google Scholar 

  22. Chorchos, L., Turkiewicz, J.P.: Experimental performance of semiconductor optical amplifiers and praseodymium-doped fiber amplifiers in 1310-nm dense wavelength division multiplexing system. Opt. Eng. 56(4), 046101 (2017)

    Article  ADS  Google Scholar 

  23. Optisystem, optisystem overview.: https://www.optiwave.com/optisystem-overview/ (2021)

  24. Jabczynski, J.K., Gorajek, L., Kwiatkowski, J., Kaskow, M., Zendzian, W.: Optimization of end-pumped, actively q-switched quasi-iii-level lasers. Opt. Express 19(17), 15-652-15–668 (2011)

    Article  Google Scholar 

  25. Ohishi, Y., Kanamori, T., Nishi, T., Takahashi, S., Snitzer, E.: Concentration effect on gain of pr/sup 3+/-doped fluoride fiber for 1.3 mu m amplification. IEEE Photonics Technol. Lett. 4(12), 1338–1341 (1992)

    Article  ADS  Google Scholar 

  26. Sek, M.: Fast power transients in concatenated pr3+-doped fluoride fiber amplifiers. J. Lightwave Technol. 16(3), 358 (1998)

    Article  Google Scholar 

  27. Teyo, T., Leong, M., Ahmad, H.: Power conversion efficiency of erbium-doped fiber amplifiers with optical feedback. J. Opt. Commun. 24(3), 82–83 (2003)

    Google Scholar 

  28. Schimmel, R.C.: Towards more efficient praseodymium doped fibre amplifiers for the o-band (2006)

  29. Kweon, G.-I.: Noise figure of optical amplifiers. J. Korean Phys. Soc. 41(5), 617–628 (2002)

    Google Scholar 

  30. Nishida, Y., Yamada, M., Kanamori, T., Kobayashi, K., Temmyo, J., Sudo, S., Ohishi, Y.: Development of an efficient praseodymium-doped fiber amplifier. IEEE J. Quantum Electron. 34(8), 1332–1339 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Khurram Karim Qureshi would like to acknowledge the support provided by the Deanship of Scientific Research (DSR) of King Fahd University of Petroleum and Minerals (KFUPM) through Project Number: SB191052.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khurram Karim Qureshi.

Ethics declarations

Conflict of interest

The authors of this manuscript certify that they have NO affiliations with or involvement in any organization or entity with any financial interest in the materials discussed in this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirza, J., Ghafoor, S., Habib, N. et al. Performance evaluation of praseodymium doped fiber amplifiers. Opt Rev 28, 611–618 (2021). https://doi.org/10.1007/s10043-021-00706-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-021-00706-z

Keywords

Navigation