Skip to main content
Log in

Dynamic holographic three-dimensional projection based on liquid crystal spatial light modulator and cylindrical fog screen

  • Special Section: Regular Paper
  • International Workshop on Holography and related technologies (IWH2014), Beijing, China
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

A dynamic holographic three-dimensional (3D) projection based on phase-only liquid crystal spatial light modulator (LC-SLM) and cylindrical fog 3D screen is introduced. Sequential kinoforms of a 3D real existing object are calculated from sixty viewing angles using the slice-based fresnel diffraction algorithm. To suppress speckle noise of reconstructed images, sub-kinoforms for each viewing angle are calculated by adding dynamic pseudorandom initial phase factor into each object plane. The sequential kinoforms are reconstructed by a holographic reconstruction system based on phase-only LC-SLM. A specially designed cylindrical fog 3D screen is used as the scattered carrying medium to project the dynamic 3D images. Through our holographic 3D projection system, a vivid dynamic holographic reconstructed projection image can be observed by some observers at the same time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Geng, J.: Three-dimensional display technologies. Adv. Opt. Photonics 5, 456 (2013)

    Article  Google Scholar 

  2. Gao, H., Li, X., He, Z., Su, Y., Poon, T.-C.: Real-time Holographic Display Based on a Super Fast Response Thin Film. J. Phys. Conf. Ser. 415 (2013)

  3. Gao, H., Zhou, Z.: Study on holographic image storage and reconstruction in azo-dye-doped liquid-crystal films. Proc. SPIE 6595, 65950W (2007)

    Article  ADS  Google Scholar 

  4. Lucente, M., Hilaire, P.S., Benton, S.A., Arias, D.L., Watlington, J.A.: New Approaches To Holographic Video. Proc. SPIE 1732, 377 (1992)

    Article  ADS  Google Scholar 

  5. Huebschman, M.L., Munjuluri, B., Garner, H.R.: Dynamic holographic 3-D image projection. Opt. Express 11, 437 (2008)

    Article  ADS  Google Scholar 

  6. Buckley, E.: Holographic Laser Projection. J. Disp. Technol. 7, 135 (2011)

    Article  ADS  Google Scholar 

  7. Lin, H.-C., Collings, N., Chen, M.-S., Lin, Y.-H.: A holographic projection system with an electrically tuning and continuously adjustable optical zoom. Opt. Express 20, 27222 (2012)

    Article  ADS  Google Scholar 

  8. Shimobaba, T., Makowski, M., Kakue, T., Oikawa, M., Okada, N., Endo, Y., Hirayama, R., Ito, T.: Lensless zoomable holographic projection using scaled Fresnel diffraction. Opt. Express 21, 25285 (2013)

    Article  ADS  Google Scholar 

  9. Makowski, M., Ducin, I., Kakarenko, K., Suszek, J., Sypek, M., Kolodziejczyk, A.: Simple holographic projection in color. Opt. Express 20, 25130 (2012)

    Article  ADS  Google Scholar 

  10. Kurihara, T., Takaki, Y.: Shading of a computer-generated hologram by zone plate modulation. Opt. Express 20, 3529 (2012)

    Article  ADS  Google Scholar 

  11. Zheng, H., Yu, Y., Wang, T., Asundi, A.: Computer-generated kinoforms of real-existing full-color 3D objects using pure-phase look-up-table method. Opt. Lasers Eng. 50, 568 (2012)

    Article  ADS  Google Scholar 

  12. Trester, S.: Computer-simulated Fresnel holography. Eur. J. Phys. 21, 317 (2000)

    Article  MATH  Google Scholar 

  13. Zheng, H., Wang, T., Dai, L., Yu, Y.: Holographic imaging of full-color real-existing three-dimensional objects with computer-generated sequential kinoforms. Chin. Opt. Lett. 9, 040901 (2011)

    Article  Google Scholar 

  14. Matsushima, K., Nakahara, S.: Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method. Appl. Opt. 48, H54 (2009)

    Article  Google Scholar 

  15. Pan, Y., Wang, Y., Liu, J., Li, X., Jia, J.: Fast polygon-based method for calculating computer-generated holograms in three-dimensional display. Appl. Opt. 52, A209 (2012)

    Article  Google Scholar 

  16. Zheng, H., Yu, Y., Wang, T., Dai, L.: High-quality three-dimensional holographic display with use of multiple fractional Fourier transform. Chin. Opt. Lett. 7, 1151 (2009)

    Article  Google Scholar 

  17. Amako, J., Miura, H., Sonehara, T.: Speckle-noise reduction on kinoform reconstruction using a phase-only spatial light modulator. Appl. Opt. 34, 3165 (1995)

    Article  ADS  Google Scholar 

  18. Hsu, W.-F., Yeh, C.-F.: Speckle suppression in holographic projection displays using temporal integration of speckle images from diffractive optical elements. Appl. Opt. 50, H50 (2011)

    Article  Google Scholar 

  19. Makowski, M.: Minimized speckle noise in lens-less holographic projection by pixel separation. Opt. Express 21, 29205 (2013)

    Article  ADS  Google Scholar 

  20. Kurihara, T., Takaki, Y.: Speckle-free, shaded 3D images produced by computer-generated holography. Opt. Express 21, 4044 (2013)

    Article  ADS  Google Scholar 

  21. Yara, F., Kang, H., Onural, L.: Real-time phase-only color holographic video display system using LED illumination. Appl. Opt. 48, H48 (2009)

    Article  Google Scholar 

  22. Song, H., Sung, G., Choi, S., Won, K., Lee, H.-S., Kim, H.: Optimal synthesis of double-phase computer generated holograms using a phase-only spatial light modulator with grating filter. Opt. Express 20, 29844 (2012)

    Article  ADS  Google Scholar 

  23. Li, X., Liu, J., Jia, J., Pan, Y., Wang, Y.: 3D dynamic holographic display by modulating complex amplitude experimentally. Opt. Express 21, 20577 (2013)

    Article  ADS  Google Scholar 

  24. Munjuluri, B., Huebschman, M.L., Garner, H.R.: Rapid hologram updates for real-time volumetric information displays. Appl. Opt. 44, 5076 (2005)

    Article  ADS  Google Scholar 

  25. Rakkolainen, I.: Feasible mid-air virtual reality with the immaterial projection screen technology. 4th IEEE 3DTV Conf., p. 1 (2010)

  26. Sand, A., Rakkolainen, I.: A Hand-held Immaterial Volumetric Display. Proc. SPIE 9011, 90110Q (2014)

    Article  ADS  Google Scholar 

  27. Diverdi, S., Rakkolainen, I., Hollerer, T., Olwal, A.: A Novel Walk-through 3D Display. Proc. SPIE 6055, 605519 (2006)

    Article  Google Scholar 

  28. http://www.fogscreen.com/. Accessed 16 June 2015

  29. http://www.io2technology.com/. Accessed 16 June 2015

  30. Tokuda, Y., Nishimura, K., Suzuki, Y., Tanikawa, T., Hirose, M.: Vortex Ring Based Display. 16th Int. Conf. Virtual Syst. Multimed., 51 (2010)

  31. Sato, K., Takano, K., Ohki, M.: Large viewing angle and image size projection type electro-holography using 3-D screen. Proc. SPIE 7233, 723316 (2009)

    Article  Google Scholar 

  32. Yagi, A., Imura, M., Kuroda, Y., Oshiro, O.: 360-degree fog projection interactive display. Proc. ACM SIGGRAPH Asia 2011 Emerging Technologies, p. 19 (2011)

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (Grant Nos. 61101176, 61235002 and 11474194), and scientific research fund for cultivating outstanding young teachers in Colleges and Universities of Shanghai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huadong Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Z., Zheng, H., Lu, X. et al. Dynamic holographic three-dimensional projection based on liquid crystal spatial light modulator and cylindrical fog screen. Opt Rev 22, 853–861 (2015). https://doi.org/10.1007/s10043-015-0109-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-015-0109-2

Keywords

Navigation