Skip to main content

Advertisement

Log in

Hydrological processes in glacierized high-altitude basins of the western Himalayas

Processus hydrologiques dans les bassins d’haute altitude avec glaciers dans l’ouest de l’Himalaya

Procesos hidrológicos en las cuencas de altura en los glaciares del Himalaya occidental

喜马拉雅山脉西部冰川覆盖的高海拔盆地的水文过程

Processo hidrológicos em bacias glaciarizadas de alta altitude do Himalaia Ocidental

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Western Himalaya is a strategically important region, where the water resources are shared by China, India and Pakistan. The economy of the region is largely dependent on the water resources delivered by snow and glacier melt. The presented study used stable isotopes of water to further understand the basin-scale hydro-meteorological, hydrological and recharge processes in three high-altitude mountainous basins of the western Himalayas. The study provided new insights in understanding the dominant factors affecting the isotopic composition of the precipitation, snowpack, glacier melt, streams and springs. It was observed that elevation-dependent post-depositional processes and snowpack evolution resulted in the higher isotopic altitude gradient in snowpacks. The similar temporal trends of isotopic signals in rivers and karst springs reflect the rapid flow transfer due to karstification of the carbonate aquifers. The attenuation of the extreme isotopic input signal in karst springs appears to be due to the mixing of source waters with the underground karst reservoirs. Basin-wise, the input–output response demonstrates the vital role of winter precipitation in maintaining the perennial flow in streams and karst springs in the region. Isotopic data were also used to estimate the mean recharge altitude of the springs.

Résumé

L’Himalaya occidental est une région stratégiquement importante, où les ressources en eau sont partagées entre la Chine, l’Inde et le Pakistan. L’économie de la région dépend en grande partie des ressources en eau apportées par la fonte des neiges et des glaciers. La présente étude a utilisé les isotopes stables de l’eau pour mieux comprendre les processus hydro-météorologiques, hydrologiques et de recharge à l’échelle du bassin de trois bassins montagneux de haute altitude dans l’Himalaya occidental. L’étude a fourni de nouvelles perspectives pour la compréhension des facteurs dominants affectant la composition isotopique des précipitations, des manteaux neigeux, de la fonte des glaciers, des cours d’eau et des sources. On a observé que les processus postérieurs au dépôt dépendant de l’altitude et l’évolution du manteau neigeux engendrent un gradient d’altitude isotopique plus élevé dans les manteaux neigeux. Les tendances temporelles similaires des signaux isotopiques dans les rivières et les sources karstiques reflètent le transfert de flux rapide en raison de la karstification des aquifères carbonatés. L’atténuation du signal isotopique d’entrée des sources karstiques semble être due au mélange d’eau des sources avec les réservoirs souterrains karstiques. En ce qui concerne le bassin, la réponse entrée-sortie démontre le rôle important des précipitations hivernales dans le maintien de l’écoulement pérenne dans les cours d’eau et les sources karstiques dans la région. Les données isotopiques ont également été utilisées pour estimer l’altitude moyenne de recharge des sources.

Resumen

El Himalaya occidental es una región estratégicamente importante, donde los recursos hídricos son compartidos por China, India y Pakistán. La economía de la región depende en gran medida de los recursos hídricos aportados por la nieve y la fusión de los glaciares. El presente estudio utilizó isótopos estables del agua para comprender mejor los procesos hidrometeorológicos, hidrológicos y de recarga a escaña de cuenca hidrográfica en tres cuencas montañosas de altura en el Himalaya occidental. El estudio proporcionó nuevas perspectivas para comprender los factores dominantes que afectan a la composición isotópica de la precipitación, la capa de nieve, la fusión de los glaciares, las corrientes y los manantiales. Se observó que los procesos post-deposicionales dependientes de la altura y la evolución de la capa de nieve resultaron en un mayor gradiente isotópico en altura de las capas de nieve. Las tendencias temporales similares de las señales isotópicas en ríos y manantiales kársticos reflejan la rápida transferencia de flujo debida a la karstificación de los acuíferos carbonatados. La atenuación de la señal de entrada isotópica extrema en los manantiales kársticos parece ser debido a la mezcla de las aguas de la fuente con los depósitos kársticos subterráneos. En la cuenca, la respuesta de ingresos y egresos demuestra el papel vital de la precipitación invernal en el mantenimiento del flujo perenne en arroyos y manantiales kársticos en la región. También se utilizaron datos isotópicos para estimar la altura media de recarga de los manantiales.

摘要

喜马拉雅山脉西部是一个战略重地, 那里的水资源由中国、印度和巴基斯坦共同分享。该地区的经济主要依赖于积雪和冰川融化的水资源。本研究使用水的稳定同位素进一步了解喜马拉雅山脉西部三个高海拔盆地中盆地尺度的水文气象、水文和补给过程。该研究在了解影响降水、积雪层、冰川融化、河流和泉中同位素组分主要因素方面提供了新的认识。发现依赖于海拔的后沉积过程及积雪层演化导致积雪层中较高的同位素海拔坡度。河流和岩溶泉中同位素信号的类似时间上的趋势反映了由于碳酸盐含水层的岩溶化致使快速的水流转移。岩溶泉中极端同位素输入信号出现衰减是由于源水和地下岩溶水库的水混合造成的。盆地方面输入和输出响应展示了冬季降水在保持本地区河流和岩溶泉常年流水中的重要作用。同位素资料还用于估算泉的平均补给高度。

Resumo

O Himalaia ocidental é uma região estrategicamente importante, onde os recursos hídricos são compartilhados pela China, Índia e Paquistão. A economia da região é altamente dependente dos recursos hídricos fornecidos pelo derretimento da neve e da geleira. O estudo apresentado usou isótopos estáveis da água para compreender melhor os processos hidrometeorológicos, hidrológicos e de recarga na escala da bacia em três bacias montanhosas de alta altitude do Himalaia ocidental. O estudo forneceu novos conhecimentos sobre a compreensão dos fatores dominantes que afetam a composição isotópica da precipitação, neve, derretimento da geleira, córregos e nascentes. Foi observado que os processos pós-deposicionais dependentes da elevação e a evolução das camadas de neve resultaram no gradiente isotópico mais alto em camadas de neve. As tendências temporais semelhantes de sinais isotópicos em rios e nas nascentes do carste refletem a rápida transferência de fluxo devido a carstificação dos aquíferos carbonático. A atenuação do sinal de entrada isotópico extremo em nascentes cársticas parece ser devido à mistura das águas de fonte com reservatórios cársticos subterrâneos. Com base na bacia, a resposta entrada-saída demonstra o papel vital da precipitação de inverno na manutenção do fluxo perene em córregos e nascentes cársticas na região. Dados isotópicos também foram utilizados para estimar a altitude média de recarga das nascentes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Araguás-Araguás L, Froehlich K, Rozanski K (1998) Stable isotope composition of precipitation over Southeast Asia. J Geophys Res 103:28721–28742

    Article  Google Scholar 

  • Bhat N, Jeelani G (2015) Delineation of the recharge areas and distinguishing the sources of karst springs in Bringi watershed, Kashmir Himalayas using hydrochemistry and environmental isotopes. J Earth Syst Sci 24(8):1667–1676

    Article  Google Scholar 

  • Bolch T, Kulkarni A, Kääb A, Huggel C, Paul F, Cogley JG, Frey H, Kargel JS, Fujita K, Scheel M, Bajracharya S (2012) The state and fate of Himalayan glaciers. Science 336:310–314

    Article  Google Scholar 

  • Breitenbach SFM, Adkins JF, Meyer H, Marwan N, Kumar KK, Haug GH (2010) Strong influence of water vapor source dynamics on stable isotopes in precipitation observed in southern Meghalaya, NE India. Earth Planet Sci Lett 292:212–220

    Article  Google Scholar 

  • Callow N, McGowan H, Warren L, Speirs J (2014) Drivers of precipitation stable oxygen isotope variability in an alpine setting. Snowy Mountains, Australia. J Geophys Res Atmos 119:3016–3031

    Article  Google Scholar 

  • Clark I, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis, Boca Raton, FL, 328 pp

    Google Scholar 

  • Coplen TB (1996) New guidelines for the reporting of stable hydrogen, carbon, and oxygen isotope ratio data. Geochim Cosmochim Acta 60:3359

    Article  Google Scholar 

  • Cruz RV, Harasawa H, Lal M, Wu S, Anokhin Y, Punsalmaa B, Honda Y, Jafari M, Li C, Huu-Ninh N (2007) Asia. In: Parry ML, Canziani OF, Palutikof JP, Van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, pp 469–506

    Google Scholar 

  • Davisson ML, Smith DK, Kenneally J, Rose TP (1999) Isotope hydrology of southern Nevada groundwater: stable isotopes and radiocarbon. Water Resour Res 35:279–294

    Article  Google Scholar 

  • Ekaykin AA, Hondoh T, Lipenkov VY, Miyamoto A (2009) Post-depositional changes in snow isotope content: preliminary results of laboratory experiments. Clim Past Discuss 5:2239–2267

    Article  Google Scholar 

  • Engel M, Penna D, Bertoldi G, Dell’Agnese A, Soulsby C, Comiti F (2016) Identifying runoff contributions during melt-induced runoff events in a glacierized alpine basin. Hydrol Process 30:343–364

    Article  Google Scholar 

  • Epstein S, Mayeda T (1953) Variation of δ18O content in waters from natural sources. Geochem Cosmochim Acta 4:213–224

    Article  Google Scholar 

  • Gat JR (2010) Isotope hydrology: a study of the water cycle. Imperial College Press, London, 189 pp

    Book  Google Scholar 

  • Gat JR, Carmi I (1970) Evolution of the isotopic composition of atmospheric waters in the Mediterranean Sea area. J Geophys Res 75:3039–3048

    Article  Google Scholar 

  • Helsen MM, van de Wal RSW, van den Broeke MR, van As D, Meijer HAJ (2005) Reijmer CH. Oxygen isotope variability in snow from western Dronning Maud Land, Antarctica. Tellus Ser B 57(5):423–435

  • Jeelani G (2008) Aquifer response to regional climate variability in a part of Kashmir Himalayas in India. Hydrogeol J 16:1625–1633

  • Jeelani G, Bhat NA, Shivanna K (2010) Use of 18O tracer to identify stream and spring origins of a mountainous catchment; a case study from Liddar Watershed, Western Himalaya, India. J Hydrol 393:257–264

    Article  Google Scholar 

  • Jeelani G, Faddema J, Van der Veen C, Leigh S (2012) Role of snow and glacier melt in controlling river hydrology in Liddar watershed (Western Himalaya). Water Resour Res 48:1–16

    Article  Google Scholar 

  • Jeelani G, Kumar US, Kumar B (2013) Variation of δ18O and δD in precipitation and stream waters across the Kashmir Himalaya (India) to distinguish and estimate the seasonal sources of stream flow. J Hydrol 481:157–165

    Article  Google Scholar 

  • Jeelani G, Kumar US, Nadeem A, Bhat NA, Sharma S, Kumar B (2015) Variation of δ18O, δ2H and 3H in karst springs of south Kashmir, western Himalayas (India). Hydrol Process 29: 522–530

  • Jeelani G, Deshpande RD, Shah RA, Hassan W (2017a) Influence of southwest monsoons in Kashmir Valley, western Himalayas. Isot Environ Health Stud 53:400–412

    Article  Google Scholar 

  • Jeelani G, Shah RA, Deshpande RD, Fryar AE, Perrin J, Mukherjee A (2017b) Distinguishing and estimating recharge to karst springs in snow and glacier dominated mountainous basins of the western Himalaya India. Hydrol 550:239–252

    Article  Google Scholar 

  • Jeelani G, Shah RA, Jacob N, Deshpande RD (2017c) Estimation of snow and glacier melt contribution to Liddar stream in a mountainous basin, Western Himalaya: an isotopic approach. Isot Environ Health Stud 53(1):18–35

    Article  Google Scholar 

  • Johnsen SJ, Clausen HB, Cuffey KM et al (2000) Diffusion of stable isotopes in polar firn and ice: the isotope effect in firn diffusion. In: Hondoh T (ed) Physics of ice core records. Hokkaido University Press, Sapporo, Japan, pp 121–140

    Google Scholar 

  • Jouzel J, Merlivat L (1984) Deuterium and oxygen-18 in precipitation: modelling of the isotopic effects during snow formation. J Geophys Res 89(D7–11):749–757

    Google Scholar 

  • Kendall C, McDonnell JJ (eds) (1998) Isotope tracers in basin hydrology. Elsevier, Amsterdam, pp 1–50

    Google Scholar 

  • Kirchner JW, Feng X, Neal C, Robson AJ (2004) The fine structure of water-quality dynamics: the (high-frequency) wave of the future. Hydrol Process 18:1353–1359

    Article  Google Scholar 

  • Kohn MJ, Welker JM (2005) On the temperature correlation of δ18O in modern precipitation. Earth Planet Sci Lett 231:87–96

    Article  Google Scholar 

  • Kumar US, Kumar B, Rai SP, Sharma S (2010) Stable isotope ratios in precipitation and their relationship with meteorological conditions in the Kumaon Himalayas, India. J Hydrol 391:1–8

    Article  Google Scholar 

  • Kurita N, Ichiyanagi K, Matsumoto J, Yamanaka MD, Ohata T (2009) The relationship between the isotopic content of precipitation and the precipitation amount in tropical regions. J Geochem Explor 102:113–122

    Article  Google Scholar 

  • Madhura RK, Krishnan R, Revadekar JV, Mujumdar M, Goswami BN (2015) Changes in western disturbances over the western Himalayas in a warming environment. Clim Dyn 44:1157–1168

    Article  Google Scholar 

  • Maurya AS, Shah M, Deshpande RD, Gupta SK (2009) Protocol for δ18O and δD analyses of water sample using Delta V plus IRMS in CF mode with gas bench II for IWIN National Programme at PRL, Ahmedabad. In: Proceedings of the 11th ISMAS triennial conference of Indian Society for Mass Spectrometry, Hyderabad. Indian Society for Mass Spectrometry, Mumbai, India, pp 314–317

    Google Scholar 

  • Mook WG (2006) Introduction to isotope hydrology. Balkema, Rotterdam, The Netherlands

    Google Scholar 

  • Moran TA, Marshall SJ, Evans EC, Sinclair KE (2007) Altitudinal gradients of stable isotopes in lee-slope precipitation in the Canadian Rocky Mountains. Arct Antarct Alp Res 39(3):455–467

    Article  Google Scholar 

  • Naftz DL, Susong DD, Cecil LD, Schuster PF (2004) Variations between δ18O in recently deposited snow and on-site air temperature, upper Fremont glacier, Wyoming. In: Cecil LD, Green JR, Thompson LG (eds) Earth paleo-environments: records preserved in mid- and low-latitude glaciers. Kluwer, Dordrecht, The Netherlands, pp 217–234

    Chapter  Google Scholar 

  • Neumann TA, Wadington ED (2004) Effects of firn ventilation on isotopic exchange. J Glaciol 50:183–192

    Article  Google Scholar 

  • O’Neil JR (1968) Hydrogen and oxygen isotope fractionation between ice and water. J Phys Chem 72:3683–3684

    Article  Google Scholar 

  • Pang H, He Y, Lu A, Zhao J, Ning B, Yuan L, Song B, Zhang N (2006) Comparisons of stable isotopic fractionation in winter and summer at Baishui glacier no. 1, Mt. Yulong, China. J Geogr Sci 16(3):306–314

    Article  Google Scholar 

  • Penna D, Engel M, Mao L, Dell’Agnese A, Bertoldi G, Comiti F (2014) Tracer-based analysis of spatial and temporal variations of water sources in a glacierized basin. Hydrol Earth Syst Sci 18:5271–5288

    Article  Google Scholar 

  • Poage MA, Chamberlain CP (2001) Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters: considerations for studies of paleo-elevation change. Am J Sci 301:1–15

    Article  Google Scholar 

  • Rhode A (1998) Snowmelt dominated systems. In: Kendall C, McDonnell JJ (eds) Isotope tracers in catchment hydrology. Elsevier, Amsterdam, pp 91–434

    Google Scholar 

  • Rodgers P, Soulsby C, Waldon S, Tetzlaff D (2005) Using stable isotope tracers to assess hydrological flow paths, residence times and landscape influences in a nested mesoscale basin. Hydrol Earth Syst Sci 9:139–155

    Article  Google Scholar 

  • Rozanski K, Aruguás-Aruguás L, Ganfiantini R (1993) Isotopic patterns in modern global precipitation. Geophys Monog Ser 78:1–36

    Google Scholar 

  • Shanley JB, Kendall C, Albert MR, Hardy JP (1995) Chemical and isotopic evolution of a layered eastern US snowpack and its relation to stream water composition. In: Tonnessen KA, Williams MW, Tranter M (eds) Biogeochemistry of seasonally snow-covered basins. IAHS Pub. 228, International Association of Hydrological Sciences, Wallingford, UK, pp 329–338

    Google Scholar 

  • Siegenthaler U, Oeschger H (1980) Correlation of 18O in precipitation with temperature and altitude. Nature 285:314–317

    Article  Google Scholar 

  • Singh P, Ramasastri KS, Kumar N (1995) Topographical influence on precipitation distribution in different ranges of western Himalayas. Nord Hydrol 26:259–284

    Google Scholar 

  • Stichler W (1987) Snow cover and snowmelt processes studied by means of environmental isotopes. In: Jones HG, Orville-Thomas WJ (eds) Seasonal snow covers: physics, chemistry, hydrology. Springer, New York, pp 297–308

    Google Scholar 

  • Stichler W, Schotterer U (2000) From accumulation to discharge: modification of stable isotopes during glacial and post-glacial processes. Hydrol Process 14(8):1423–1438

    Article  Google Scholar 

  • Tian L, Ma L, Yu W, Liu Z, Yin C, Zhao Z, Tang W, Wang Y (2008) Seasonal variations of stable isotope in precipitation and moisture transport at Yushu, eastern Tibetan Plateau. Sci China Ser D 51:1121–1128

    Article  Google Scholar 

  • Tiwari VM, Wahr J, Swenson S (2009) Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys Res Lett 36:L18401. https://doi.org/10.1029/2009GL039401

    Article  Google Scholar 

  • Unnikrishna PV, McDonnell JJ, Kendall C (2002) Isotope variations in a Sierra Nevada snowpack and their relation to meltwater. J Hydrol 260:38–57

    Article  Google Scholar 

  • Windhorst D, Waltz T, Timbe E, Frede HG, Breuer L (2013) Impact of elevation and weather patterns on the isotopic composition of precipitation in a tropical montane rainforest. Hydrol Earth Syst Sci 17:409–419

    Article  Google Scholar 

  • Yao TD, Zhou H, Yang XX (2009) Indian monsoon influences altitude effect of δ18O in precipitation/river water on the Tibetan plateau. Sci Bull 54:2724–2731

    Article  Google Scholar 

Download references

Acknowledgements

The research work was funded by Department of Science and Technology (DST), Government of India, under the research project DST No: SERB/F/1554/2012. The authors wish to thank the scientists and other staff at Physical Research Laboratory Ahmedabad for analysing the samples for δ18O and δ2H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghulam Jeelani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeelani, G., Shah, R.A., Fryar, A.E. et al. Hydrological processes in glacierized high-altitude basins of the western Himalayas. Hydrogeol J 26, 615–628 (2018). https://doi.org/10.1007/s10040-017-1666-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-017-1666-1

Keywords

Navigation