Skip to main content
Log in

Improved water resource management for a highly complex environment using three-dimensional groundwater modelling

Amélioration de la gestion des ressources en eau pour un environnement très complexe en utilisant une modélisation tridimensionnelle des eaux souterraines

Mejora de la gestión de los recursos hídricos para un ambiente altamente complejo mediante el modelado tridimensional del agua subterránea

采用三维地下水模拟提高高度复杂环境下的水资源管理水平

Gerenciamento de recursos hídricos aprimorado para um ambiente altamente complexo usando modelagem tridimensional de águas subterrâneas

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

A three-dimensional groundwater model was used to improve water resource management for a study area in north-west Switzerland, where drinking-water production is close to former landfills and industrial areas. To avoid drinking-water contamination, artificial groundwater recharge with surface water is used to create a hydraulic barrier between the contaminated sites and drinking-water extraction wells. The model was used for simulating existing and proposed water management strategies as a tool to ensure the utmost security for drinking water. A systematic evaluation of the flow direction between existing observation points using a developed three-point estimation method for a large number of scenarios was carried out. It is demonstrated that systematically applying the developed methodology helps to identify vulnerable locations which are sensitive to changing boundary conditions such as those arising from changes to artificial groundwater recharge rates. At these locations, additional investigations and protection are required. The presented integrated approach, using the groundwater flow direction between observation points, can be easily transferred to a variety of hydrological settings to systematically evaluate groundwater modelling scenarios.

Résumé

Un modèle tridimensionnel d’eau souterraine a été utilisé pour améliorer la gestion des ressources en eau pour une zone d’étude dans le Nord-Ouest de la Suisse, où la production d’eau potable est à proximité d’anciens sites d’enfouissement et des zones industrielles. Pour éviter la contamination de l’eau potable, la recharge artificielle des eaux souterraines avec de l’eau de surface est utilisée pour créer une barrière hydraulique entre les sites contaminés et les puits d’exploitation d’eau potable. Le modèle a été utilisé pour simuler les stratégies existantes et proposées de gestion de la ressource en eau comme outil pour assurer la plus grande sécurité pour l’eau potable. Une évaluation systémique de la direction des écoulements entre les piézomètres existants en utilisant une méthode d’estimation à trois points développée pour un grand nombre de scénarios a été réalisée. Il est démontré que l’application systématique de la méthodologie développée aide à identifier les endroits vulnérables qui sont sensibles aux changements des conditions aux limites, telles que celles résultant des changements de taux de recharge artificielle des eaux souterraines. Dans ces endroits, des études et protection complémentaires sont requises. L’approche intégrée présentée, en utilisant la direction de l’écoulement des eaux souterraines entre les piézomètres, peut être facilement transférée à une variété de contextes hydrogéologiques pour évaluer de manière systématique des scénarios de modélisation des eaux souterraines.

Resumen

Se utilizó un modelo tridimensional de agua subterránea para mejorar la gestión de los recursos hídricos de un área de estudio en el noroeste de Suiza, donde la producción de agua potable está cerca de los antiguos vertederos de residuos y zonas industriales. Para evitar la contaminación del agua potable, la recarga artificial de agua subterránea con agua superficial se utiliza para crear una barrera hidráulica entre los sitios contaminados y los pozos de extracción de agua potable. El modelo se utilizó para simular las estrategias existentes y propuestas de gestión del agua como una herramienta para garantizar la máxima seguridad para el agua potable. Se llevó a cabo una evaluación sistemática de la dirección del flujo entre puntos de observación existentes utilizando un método de estimación de tres puntos desarrollado para un gran número de escenarios. Se demuestra que la aplicación sistemática de la metodología desarrollada ayuda a identificar lugares vulnerables que son sensibles a las condiciones cambiantes de los límites, como los que surgen de los cambios en las tasas de recarga artificial de agua subterránea. En estos lugares, se requieren investigaciones adicionales y de protección. El enfoque integrado que se presenta, que utiliza la dirección del flujo de agua subterránea entre los puntos de observación, puede transferirse fácilmente a una variedad de ambientes hidrológicos para evaluar sistemáticamente los escenarios a partir del modelado del agua subterránea.

摘要

在瑞士西北部一个研究区,饮用水生产靠近过去的填埋场及工业区,在这里利用三维地下水模型提高水资源的管理水平。为了避免饮用水遭到污染,采用地表水人工补给地下水,在污染的场地和饮用水抽水井之间构建水力屏障。模型用作进行模拟现有的和建议的水管理策略的工具,以确保饮用水的绝对安全。利用开发出的针对各种不同方案的三点估算法对现有观测点之间的水流方向进行了系统评估。证明系统应用开发的方法有助于确定易受物探的位置,这些位置对变化的边界条件诸如人工地下水补给量导致的边界变化非常敏感。在这些位置,需要进行额外的调查和保护。所展示的利用观测点之间水流方向的综合方法可容易地应用到各种水文地质背景下,系统地评估地下水模拟方案。

Resumo

Um modelo tridimensional de águas subterrâneas foi utilizado para aprimorar o gerenciamento de recursos hídricos para uma área de estudo no noroeste da Suíça, onde a produção de água potável está próxima de antigos aterros e áreas industriais. Para evitar a contaminação da água potável, a recarga artificial de águas subterrâneas com água superficial é utilizada para criar uma barreira hidráulica entre os locais contaminados e os poços de extração de água potável. O modelo foi utilizado para simular estratégias existentes e propostas de gerenciamento da água, como uma ferramenta para garantir a máxima segurança para a água potável. Foi realizada uma avaliação sistemática da direção do fluxo entre os pontos de observação existentes utilizando um método de estimativa de três pontos desenvolvido para um grande número de cenários. Demonstra-se que a aplicação sistemática da metodologia desenvolvida ajuda a identificar locais vulneráveis que são sensíveis a modificações nas condições de contorno, tais como os decorrentes de mudanças nas taxas de recarga artificial de água subterrânea. Nesses locais, são necessárias investigações adicionais e proteção. A abordagem integrada apresentada, utilizando a direção do fluxo das águas subterrâneas entre os pontos de observação, pode ser facilmente transferida a uma variedade de configurações hidrológicas para avaliar sistematicamente cenários de modelagem de águas subterrâneas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Affolter A, Huggenberger P, Zechner E (2010) Grundwassermodell Unteres Birstal- Rhein - Muttenz: Evaluation der Zustrombereiche der Trinkwasserfassung Muttenz und Hardwasser AG [Groundwater model Unteres Birstal- Rhein - Muttenz: Evaluation of the inflow zone of the drinking water supply system Muttenz and Hardwasser AG ]. Report. BL-155, BGA

  • Auckenthaler A, Baenninger D, Affolter A, Zechner E, Huggenberger P (2010) Drinking water production close to contaminant sites: a case study from the region of Basel, Switzerland. GQ10: groundwater quality management in a rapidly changing world. Proc. 7th International Groundwater Quality Conference held in Zurich, Switzerland, 13-18 June 2010. IAHS Publ. 342 (2011), pp 167-170

  • AUG (Angewandte und Umweltgeologie der Universität Basel) (2009) Stationär kalibriertes Grundwassermodell Muttenz unteres Birstal: Berechnung geschichtlicher Szenarien zur Abschätzung der Schadstoffverteilung der Deponien in Muttenz [Steady-state calibrated groundwater model for Muttenz unteres Birstal: historical scenarios for the evaluation of contaminant distribution in the landfill in Muttenz]. Report BGA BL-155, AUG, Basel, Switzerland

  • AUG (Angewandte und Umweltgeologie der Universität Basel) (2010) Grundwassermodell Unteres Birstal - Rhein - Muttenz: Evaluation der Zuströmbereiche der Trinkwasserfassungen Muttenz und Hardwasser AG [Groundwater model for Unteres Birstal - Rhein - Muttenz: evaluation of the inflow areas of drinking water sites Muttenz and Hardwasser AG]. Report BGA BL-155, AUG, Basel, Switzerland

  • Baillieux A, Moeck C, Perrochet P, Hunkeler D (2015) Assessing groundwater quality trends in pumping wells using spatially varying transfer functions. Hydrogeol J 23:1449–1463

    Article  Google Scholar 

  • Bitterli-Brunner P, Fischer H (1988) Blatt 1067 Arlesheim: Erläuterungen, Geologischer Atlas der Schweiz 1:25′000 [Sheet 1067, Arlesheim: explanations, geological atlas of Switzerland1:25,000]. National Hydrological and Geological Survey, Bern, Switzerland

  • Butscher C, Huggenberger P (2007) Implications for karst hydrology from 3D geological modeling using the aquifer base gradient approach. J Hydrol 342:184–198

    Article  Google Scholar 

  • Devlin JF (2003) A spreadsheet method of estimating best-fit hydraulic gradients using head data from multiple wells. Ground Water 41(3):316–320

    Article  Google Scholar 

  • Devlin JF, McElwee CD (2007) Effects of measurement error on horizontal hydraulic gradient estimates. Ground Water 45(1):62–73

    Article  Google Scholar 

  • Devlin JF, Schillig PC (2017) HydrogeoEstimatorXL: an Excel-based tool for estimating hydraulic gradient magnitude and direction. Hydrogeol J 25:867. doi:10.1007/s10040-016-1518-4

    Article  Google Scholar 

  • Doherty JE (2011) PEST: model-independent parameter estimation, user manual. Watermark, Brisbane, Australia. Available at http://www.pesthomepage.org/Downloads.php. Accessed 20 Nov 2016

  • Doherty J, Simmons CT (2013) Groundwater modelling in decision support: reflections on a unified conceptual framework. Hydrogeol J 21:1531–1537

    Article  Google Scholar 

  • Foglia L, Hill MC, Mehl SW, Burlando P (2009) Sensitivity analysis, calibration, and testing of a distributed hydrological model using error-based weighting and one objective function. Water Resour Res 45:627–641

    Article  Google Scholar 

  • Freeze RA, Massmann J, Smith L, Sperling T, James B (1990) Hydrogeological decision-analysis, 1: a framework. Ground Water 28:738–766

    Article  Google Scholar 

  • Gorelick SM, Zheng C (2015) Global change and the groundwater management challenge. Water Resour Res 51:3031–3051. doi:10.1002/2014WR016825

    Article  Google Scholar 

  • Gürler B, Hauber L, Schwander M (1987) Die Geologie der Umgebung von Basel mit Hinweisen über die Nutzungsmöglichkeiten der Erdwärme, Beiträge zur Geologischen Karte der Schweiz [Geology of Basel and surroundings, including remarks on the potential of geothermal energy use: contribution to the geological map of Switzerland]. National Hydrological and Geological Survey Geotechnical Committee, Bern, Switzerland

  • Hunkeler D, Laier T, Breider F, Jacobsen OS (2012) Demonstrating a natural origin of chloroform in groundwater using stable carbon isotopes. Environ Sci Technol 46:6096–6101

    Article  Google Scholar 

  • Jha M, Datta B (2013) Three-dimensional groundwater contamination source identification using adaptive simulated annealing. J Hydrol Eng18. doi:10.1061/(ASCE)HE.1943-5584.0000624

  • Keating EH, Doherty J, Vrugt JA, Kang QJ (2010) Optimization and uncertainty assessment of strongly nonlinear groundwater models with high parameter dimensionality. Water Resour Res 46:W10517. doi:10.1029/2009WR008584

  • Levison J, Novakowski K, Reiner E, Kolic T (2012) Potential of groundwater contamination by polybrominated diphenyl ethers (PBDEs) in a sensitive bedrock aquifer (Canada). Hydrogeol J 20:401–412. doi:10.1007/s10040-011-0813-3

    Article  Google Scholar 

  • Michalak AM, Kitanidis PK (2004) Estimation of historical groundwater contaminant distribution using the adjoint state method applied to geostatistical inverse modeling. Water Resour Res 40:W08302

    Article  Google Scholar 

  • Milnes E, Perrochet P (2007) Simultaneous identification of a single pollution point-source location and contamination time under known flow field conditions. Adv Water Resour 30:2439–2446

    Article  Google Scholar 

  • Moeck C, Hunkeler D, Brunner P (2015) Tutorials as a flexible alternative to GUIs: an example for advanced model calibration using pilot points. Environ Model Softw 66:78–86

    Article  Google Scholar 

  • Moeck C, Radny D, Borer P, Rothardt J, Auckenthaler A, Berg M, Schirmer M (2016) Multicomponent statistical analysis to identify flow and transport processes in a highly complex environment. J Hydrol 542:437–449

    Article  Google Scholar 

  • Moeck C, Radny D, Auckenthaler A, Berg M, Hollender J, Schirmer M (2017a) Estimating spatial distribution of artificial groundwater recharge using multiple tracers. Isot Environ Health Stud. doi:10.1080/10256016.2017.1334651

  • Moeck C, Radny D, Popp A, Brennwald M, Stoll S, Auckenthaler A, Berg M, Schirmer M (2017b) Characterization of a managed aquifer recharge system using multiple tracers. Sci Total Environ. doi:10.1016/j.scitotenv.2017.07.211

  • Moore C, Doherty J (2006) The cost of uniqueness in groundwater model calibration. Adv Water Resour 29:605–623

    Article  Google Scholar 

  • Nijenhuis I, Schmidt M, Pellegatti E, Paramatti E, Richnow HH, Gargini A (2013) A stable isotope approach for source apportionment of chlorinated ethene plumes at a complex multi-contamination events urban site. J Contam Hydrol 153:92–105. doi:10.1016/j.jconhyd.2013.06.004

    Article  Google Scholar 

  • Pearson FJ Jr, Balderer W, Loosli HH, Lehmann BE, Matter A, Peters TJ, Schmassmann H, Gautschi A (eds) (1991) Applied isotope hydrogeology: a case study in northern Switzerland. Studies in Environmental Sciences, vol 43. Elsevier, Amsterdam

    Google Scholar 

  • Pinder GF, Celia M, Gray WG (1981) Velocity calculation from randomly located hydraulic heads. Ground Water 19(3):262–264

    Article  Google Scholar 

  • R Development Core Team (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org

  • Schirmer M, Leschik S, Musolff A (2013) Current research in urban hydrogeology: a review. Adv Water Resour 51:280–291

    Article  Google Scholar 

  • Singh A (2013) Groundwater modelling for the assessment of water management alternatives. J Hydrol 481:220–229. doi:10.1016/j.jhydrol.2012.12.042

    Article  Google Scholar 

  • Singh A (2014) Simulation–optimization modeling for conjunctive water use management. Agric Water Manage 141:23–29. doi:10.1016/j.agwat.2014.04.003

    Article  Google Scholar 

  • Spottke I, Zechner E, Huggenberger P (2005) The southeastern border of the upper Rhine Graben: a 3D geological model and its importance for tectonics and groundwater flow. Int J Earth Sci 94:580–593

    Article  Google Scholar 

  • Srivastava D, Singh RM (2015) Groundwater system modeling for simultaneous identification of pollution sources and parameters with uncertainty characterization. Water Resour Manag 29:4607–4627. doi:10.1007/s11269-015-1078-8

    Article  Google Scholar 

  • Strauch G, Möder M, Wennrich R, Osenbrück K, Gläser H-R, Schladitz T, Müller C, Schirmer K, Reinstorf F, Schirmer M (2008) Indicators for assessing anthropogenic impact on urban surface and groundwater. J Soils Sediments 8:23–33

    Article  Google Scholar 

  • Tariq SR, Shah MH, Shaheen N, Jaffar M, Khalique A (2008) Statistical source identification of metals in groundwater exposed to industrial contamination. Environ Monit Assess 138:159–165

    Article  Google Scholar 

  • Woodbury AD, Sudicky EA (1991) The geostatistical characteristics of the Borden aquifer. Water Resour Res 27:533–546

    Article  Google Scholar 

  • Zhang J, Zeng L, Chen C, Chen D, Wu L (2015) Efficient Bayesian experimental design for contaminant source identification. Water Resour Res 51:576–598. doi:10.1002/2014WR015740

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Canton Basel-Landschaft, Switzerland, in the framework of the project “Regionale Wasserversorgung Basel-Landschaft 21” as well as internal Eawag Discretionary Funding. This study was also supported by the Competence Center Environment and Sustainability (CCES) of the ETH domain in the framework of the RECORD Catchment project (coupled ecological, hydrological and social dynamics in restored and channelized corridors of a river at the catchment scale). The AE and two anonymous reviewers are greatly appreciated for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Moeck.

Electronic supplementary material

ESM 1

(PDF 3116 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moeck, C., Affolter, A., Radny, D. et al. Improved water resource management for a highly complex environment using three-dimensional groundwater modelling. Hydrogeol J 26, 133–146 (2018). https://doi.org/10.1007/s10040-017-1640-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-017-1640-y

Keywords

Navigation