Skip to main content
Log in

Overview of groundwater sources and water-supply systems, and associated microbial pollution, in Finland, Norway and Iceland

Aperçu des ressources en eau souterraine et des systèmes d’approvisionnement en eau, et pollution microbienne associée, en Finlande, Norvège et Islande

Visión general de las fuentes de agua subterránea y de los sistemas de abastecimiento de agua, y la contaminación microbiana asociada, en Finlandia, Noruega e Islandia

芬兰、挪威和冰岛地下水源、供水系统以及相关微生物污染的回顾

Panorâma das fontes de águas subterrâneas e sistemas de abastecimento de água, e poluição microbiana associada, na Finlândia, Noruega e Islândia

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The characteristics of groundwater systems and groundwater contamination in Finland, Norway and Iceland are presented, as they relate to outbreaks of disease. Disparities among the Nordic countries in the approach to providing safe drinking water from groundwater are discussed, and recommendations are given for the future. Groundwater recharge is typically high in autumn or winter months or after snowmelt in the coldest regions. Most inland aquifers are unconfined and therefore vulnerable to pollution, but they are often without much anthropogenic influence and the water quality is good. In coastal zones, previously emplaced marine sediments may confine and protect aquifers to some extent. However, the water quality in these aquifers is highly variable, as the coastal regions are also most influenced by agriculture, sea-water intrusion and urban settlements resulting in challenging conditions for water abstraction and supply. Groundwater is typically extracted from Quaternary deposits for small and medium municipalities, from bedrock for single households, and from surface water for the largest cities, except for Iceland, which relies almost entirely on groundwater for public supply. Managed aquifer recharge, with or without prior water treatment, is widely used in Finland to extend present groundwater resources. Especially at small utilities, groundwater is often supplied without treatment. Despite generally good water quality, microbial contamination has occurred, principally by norovirus and Campylobacter, with larger outbreaks resulting from sewage contamination, cross-connections into drinking water supplies, heavy rainfall events, and ingress of polluted surface water to groundwater.

Résumé

Les caractéristiques des systèmes aquifères et la contamination des eaux souterraines en Finlande, Norvège et Islande, sont présentées, en lien avec des épidémies de maladies. Les disparités entre ces pays nordiques quant à l’approche utilisée en matière d’approvisionnement en eau potable à partir des eaux souterraines sont discutées, et des recommandations sont formulées pour le futur. La recharge des aquifères est habituellement élevée durant les mois d’automne ou d’hiver ou encore après la fonte des neiges dans les régions les plus froides. La plupart des aquifères continentaux sont libres et donc vulnérables aux pollutions, mais cependant ils sont souvent dépourvus de pressions anthropiques et la qualité de l’eau est bonne. Dans les zones côtières, les sédiments marins déposés précédemment peuvent rendre les aquifères captifs et les protéger dans une certaine mesure. Toutefois, la qualité d’eau de ces aquifères est très variable, du fait que les régions côtières sont également les plus influencées par l’agriculture, les intrusions d’eau de mer et les agglomérations urbaines, ce qui entraîne des conditions difficiles d’exploitation et d’approvisionnement en eau. Les eaux souterraines sont classiquement prélevées dans les dépôts sédimentaires du Quaternaire pour les municipalités de petite et moyenne dimension, dans le socle pour les habitations isolées, et dans les eaux de surface pour les plus grandes villes, à l’exception de l’Islande, où l’alimentation en eau potable repose presque entièrement sur les eaux souterraines. La gestion des aquifères par recharge artificielle, avec ou sans traitement préalable de l’eau, est largement répandue en Finlande afin d’accroître les ressources actuelles d’eau souterraine. En particulier pour les petits services d’adduction, l’eau souterraine est souvent distribuée sans traitement. Malgré la bonne qualité de l’eau en général, des contaminations microbiennes sont principalement causées par des norovirus et la bactérie Campylobacter, avec des épidémies plus importantes résultant d’une contamination par des eaux usées, des interactions avec les réseaux de distribution de l’eau potable, des événements pluvieux intenses, et des infiltrations d’eaux de surface contaminées vers les eaux souterraines.

Resumen

Se presentan las características de los sistemas de agua subterránea y de su contaminación en Finlandia, Noruega e Islandia, así como su relación con brotes de enfermedades. Se discuten las disparidades entre los países nórdicos en cuanto al enfoque para proveer agua potable segura a partir del agua subterránea y se dan recomendaciones para el futuro. La recarga de agua subterránea suele ser alta en los meses de otoño o invierno o después de la deshielo en las regiones más frías. La mayoría de los acuíferos continentales no están confinados y por lo tanto son vulnerables a la contaminación, pero a menudo carecen de mucha influencia antropogénica y la calidad del agua es buena. En las zonas costeras, los sedimentos marinos previamente emplazados pueden estar confinados y proteger hasta cierto punto a los acuíferos. Sin embargo, la calidad del agua en estos acuíferos es muy variable, ya que las regiones costeras también están más influenciadas por la agricultura, la intrusión de agua de mar y los asentamientos urbanos, resultando condiciones desafiantes para la captación y suministro de agua. El agua subterránea se extrae típicamente a partir de los depósitos del Cuaternario en los municipios pequeños y medianos, a partir de la roca de base en los hogares unifamiliares, y a partir del agua superficial en las ciudades más grandes, a excepción de Islandia, que depende casi enteramente de agua subterránea para el suministro público. La gestión de la recarga de acuíferos, con o sin tratamiento previo de agua, es ampliamente utilizada en Finlandia para extender los recursos actuales del agua subterránea. Especialmente en pequeñas empresas de servicios públicos, a menudo se suministra agua subterránea sin tratamiento. A pesar de la buena calidad del agua en general, la contaminación microbiana ha ocurrido, principalmente por norovirus y Campylobacter, con los brotes más grandes como resultado de la contaminación a partir de las aguas residuales, conexiones cruzadas en el suministro de agua potable, fuertes lluvias y el ingreso de agua superficial contaminada al agua subterránea.

摘要

本文展示了芬兰、挪威和冰岛地下水系统和地下水污染的特征,因为这些特征与疾病的爆发密切相关。论述了北欧国家在从地下水中提供安全饮用水方法中各国之间的差异,并为将来提供了建议。地下水补给在秋天和冬季或者最寒冷地区雪融之后通常很高。最内陆含水层为非承压含水层,因此,容易受到污染,但一般没有很大的人为影响,水质很好。在沿海地区,先前沉积的海相沉积物可能承压,在一定程度上保护含水层。然而,这些含水层的水质变化很大,因为沿海地区也受到农业、海水入侵和城市定居点极大影响,导致抽水和供水面临挑战。通常从第四纪沉积层中抽取地下水用于中小城市,从基岩层抽水用于家庭以及从地表水抽取用于最大的城市,冰岛是个例外,冰岛几乎完全依赖地下水用于公共供水。管理的含水层补给,无论是否经过水处理,在芬兰得到广泛应用,目的就是扩大目前的地下水资源。特别是在小的公共事业上,通常提供的地下水没有经过处理。尽管总的来说水质良好,但已经发生过微生物污染,主要是由诺洛病毒和弯曲杆菌导致的,还由于下水道污染、连通到饮用水供水、暴雨事件及污染的地表水进入地下水引起过较大的爆发。

Resumo

As características dos sistemas de águas subterrâneas e contaminações subterrâneas na Finlândia, Noruega e Islândia são apresentadas, uma vez que estão relacionados com surtos de doenças. Disparidades entre os países Nórdicos na abordagem de fornecimento de água potável segura dos aquíferos são discutidas e fornecidas recomendações futuras. A recarga das águas subterrâneas é tipicamente mais elevada nos meses de outono ou inverno, ou após o desgelo das regiões mais frias. A maior parte dos aquíferos do interior são confinados e, portanto, vulneráveis à poluição, mas existe pouca interferência antrópica e qualidade da água é considerada boa. Na zona costeira, os sedimentos marinhos previamente depositados podem confinar e proteger os aquíferos até certo ponto. Entretanto, a qualidade da água nesses aquíferos é altamente variável, uma vez que as regiões costeiras também são mais influenciadas pela agricultura, intrusão de água salina e assentamentos urbanos, resultando em condições desafiadoras para a captação e abastecimento de água. As águas subterrâneas são comumente extraídas de depósitos Quaternários para pequenas e médias cidades, do maciço rochoso para residências individuais, e das águas superficiais para grandes cidades, com exceção da Islândia, que depende quase inteiramente das águas subterrâneas para abastecimento público. O gerenciamento da recarga de aquíferos, com ou sem tratamento prévio da água, é amplamente utilizado na Finlândia para preservar os recursos hídricos. Especialmente em pequenas cidades, a água subterrânea é fornecida sem tratamento. Apesar da boa qualidade da água de um modo geral, a contaminação microbiana tem ocorrido principalmente por norovírus e Campylobacter, com surtos maiores resultantes da contaminação de esgotos, ligações cruzadas no abastecimento de água potável, eventos de chuvas intensas e intrusão de águas superficiais poluídas nas águas subterrâneas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ala-aho P, Rossi PM, Kløve B (2015) Estimation of temporal and spatial variations in groundwater recharge in unconfined sand aquifers using Scots pine inventories. Hydrol Earth Syst Sci 19:1961–1976

  • Aller L, Bennet T, Lehr JH, Petty RJ, Hachet G (1987). DRASTIC: A standardised system for evaluating groundwater pollution potential using hydrogeologic settings (EPA 600/2-87). Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency Report. pp. 622.

  • Artimo A, Saraperä A, Ylander I (2008) Methods for integrating an extensive geodatabase with 3D modeling and data management tools for the Virttaankangas Artificial Recharge Project, southwestern Finland. Water Resour Manag 22:1723–1739

    Article  Google Scholar 

  • Assmuth T, Strandberg T (1993) Ground-water contamination at Finnish landfills. Water Air Soil Pollut 69:179–199

    Article  Google Scholar 

  • Atladottir A (2006) Outbreaks of norovirus infections in two tourist resorts in Iceland in the summer 2004. Abstracts, Nordic Drinking water conference, 8–10 July 2006, Reykjavik, Iceland

  • Balderacchi M, Benoit P, Cambier P, Eklo OM, Gargini A, Gemitzi A, Gurel M, Kløve B, Nakic Z, Preda E, Ruzicic S, Wachniew P, Trevisan M (2013) Groundwater pollution and quality monitoring approaches at the European level. Crit Rev Environ Sci Technol 43:323–408

    Article  Google Scholar 

  • Borchardt MA, Haas NL, Hunt RJ (2004) Vulnerability of drinking-water wells in La Crosse, Wisconsin, to enteric-virus contamination from surface water contributions. Appl Environ Microbiol 69(2):1172–1180

    Article  Google Scholar 

  • Chave P, Howard G, Schijven J, Appleyard S, Fladerer F, Schimon W (2006) Protecting groundwater for health. World Health Organisation, Geneva

    Google Scholar 

  • Cool G, Rodriguez MJ, Bouchard C, Levallois P, Joerin F (2010) Evaluation of the vulnerability to contamination of drinking water systems for rural regions in Quebec, Canada. J Environ Plan Manag 53:615–638

    Article  Google Scholar 

  • Darling WG, Morris B, Stuart ME, Gooddy DC (2005) Groundwater age indicators from public supplies tapping the Chalk aquifer of southern England. Water Environ Manag 19:30–40

    Article  Google Scholar 

  • Duscher K (2013) Groundwater GIS reference layer: submission/compilation status and evaluation. EEA/NSV/10/002, ETC/ICM, Helmholtz, Magdeburg, Germany

  • EC (2010) Report from the Commission in accordance with Article 3.7 of the Groundwater Directive 2006/118/EC on the establishment of groundwater threshold values. 5.3.2010 C, 1096 final, European Commission, Brussels, 10 pp

  • Ekholm H, Heinonen M, Härkki H, Rapala J, Kaloinen J, Toivikko S (2014) The Sanitation Safety Plan: health and environmental risk management tool for wastewater utilities. Abstracts of IWA World Water Congress, Lisbon, 21–26 Sept. 2014

  • Engberg J, Gerner-Smidt P, Scheutz F, Nielsen E, On SLW, Malbak K (1998) Water-borne Campylobacter jejuni infection in a Danish town: a 6-week continuous source outbreak. Clin Microbiol Infect 4(11):648–656

    Article  Google Scholar 

  • Gaut S (2005) Factors influencing microbiological quality of groundwater form potable water supply wells in Norwegian crystalline bedrock aquifers. PhD Thesis, Norwegian University of Science and Technology, Norway, 99 pp

  • Gaut S, Dagestad A, Robertson L, Gjerde B, BRattli B (2008) Occurrencce of Cryptosporidium oocysts and Giardia cysts in Norwegian groundwater wells in bedrock. J Water Health 6(3):383–388

    Article  Google Scholar 

  • Gubbels S, Kuhn KG, Larsson JT, Adelhardt M, Engberg J, Ingildsen P, Hollesen LW, Muchitsch S, Molbak K, Ethelberg S (2012) A waterborne outbreak with a single clone of Campylobacter jejuni in the Danish town of Koge in May 2010. Scand J Infect Dis 44(8):586–594

    Article  Google Scholar 

  • Gunnarsdottir MJ (2005) Drinking water quality and water resource protection (Neysluvatnsgæði og vatnsvernd). Master thesis at University of Iceland

  • Gunnarsdottir MJ, Gardarsson SM (2015) Gæði neysluvatns á Íslandi 2002–2012 [Drinking water quality in Iceland 2002–2012]. Skýrsla unnin fyrir Matvælastofnun. http://www.mast.is/library/Sk%C3%BDrslur/GaedineysluvatnsaIslandi150331.pdf. Accessed June 2016

  • Gunnarsdottir MJ, Gardarsson SM, Bartram J (2012a) Icelandic experience with water safety plans. Water Sci Technol 65(2):277–288

    Article  Google Scholar 

  • Gunnarsdottir MJ, Gardarsson SM, Elliott MA, Sigmundsdottir G, Bartram J (2012b) Benefits of water safety plans: microbiology, compliance and public health. Environ Sci Technol 46(14):7782–7789

    Article  Google Scholar 

  • Gunnarsdottir MJ, Gardarsson SM, Andradottir HO (2013) Microbial contamination in groundwater supply in cold climate and coarse soil: case study of norovirus outbreak at Lake Mývatn, Iceland. Hydrol Res 44(6):1114–1128. doi:10.2166/nh.2013.076

    Article  Google Scholar 

  • Gunnarsdottir MJ, Gardarsson SM, Bartram J (2015a) Developing a national framework for safe drinking water: case study from Iceland. Int J Hyg Environ Health 281(2):196–202. doi:10.1016/j.ijheh.2014.10.003

    Article  Google Scholar 

  • Gunnarsdottir MJ, Gardarsson SM, Jonsson GS, Armannsson H, Bartram J (2015b) Natural background levels for chemicals in basaltic volcanic aquifers. Hydrol Res 46(4):647–660. doi:10.2166/nh.2014.123

    Article  Google Scholar 

  • Gunnarsdottir MJ, Gardarsson SM, Jonsson GJ, Bartram J (2016) Chemical quality and regulatory compliance of drinking water in Iceland. Int J Hyg Environ Health 219:24–733

    Article  Google Scholar 

  • Guzman-Herrador B, Freiesleben de Blasio B, MacDonald E, Nichols G, Sudre B, Vold L, Semenza JC, Nygård K (2015a) Analytical studies assessing the association between extreme precipitation or temperature and drinking water-related waterborne infections: a review. Environ Health 14:29. doi:10.1186/s12940-015-0014-y

    Article  Google Scholar 

  • Guzman-Herrador B, Carlander A, Ethelberg S, Freiesleben de Blasio B, Kuusi M, Lund V, Löfdahl M, MacDonald E, Nichols G, Schönning C, Sudre B, Trönnberg L, Vold L, Semenza JC, Nygård K (2015b). Waterborne outbreaks in the Nordic countries, 1998 to 2012. Euro Surveill 20(24), 21160. Available online: http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=21160. Accessed June 2016

  • Hänninen ML, Haajanen H, Pummi T, Wermundsen K, Katila ML, Sarkkinen H, Miettinen I, Rautelin H (2003) Detection and typing of Campylobacter jejuni and Campylobacter coli and analysis of indicator organisms in three waterborne outbreaks in Finland. Appl Environ Microbiol 69(3):1391–1396

    Article  Google Scholar 

  • Härkki H, Rapala J (2014) Web-based risk management tool for water safety planning. The proceedings of 9th Nordic Drinking water conference, 2–4 July 2014, Helsinki, Finland

  • Hatva T, Hyyppä J, Penttinen H, Ikäheimo J, Sandborg M (1993) Soranoton vaikutus pohjaveteen. Raportti V: Soranotto ja pohjaveden suojelu [Gravel extraction on groundwater. Report V: gravel extraction and groundwater protection]. Vesi- ja ympäristöhallinnon julkaisuja - Sarja B 15. Vesi-ja ympäristöhallitus [Water and Environment Administration], Helsinki, 119 pp

  • Helse- og omsorgsdepartementet (2001) Forskrift 4. desember 2001 nr. 1372 om vannforsyning og drikkevann (Drikkevannsforskriften) [Regulation 4 December 2001 no. 1372 on water supply and drinking water (drinking water regulations)]. Available from: https://lovdata.no/dokument/SF/forskrift/2001-12-04-1372. Accessed 18 June 2016

  • Hrudey SE, Hrudey EJ (2007) Published case studies of waterborne disease outbreaks: evidence of a recurrent threat. Water Environ Res 79(3):233–245

    Article  Google Scholar 

  • Hulsmann A (2005) Small systems large problems: a European inventory of small water systems and associated problems. Report of Web-based European Knowledge Network on Water WEKNOW/ENDWARE, European Commission, Brussels; KWR Watercycle Research Institute: Nieuwegein, The Netherlands, 41 pp

  • Hunter PR, Pond K, Jagals P, Cameron J (2009) An assessment of the costs and benefits of interventions aimed at improving rural community water supplies in developed countries. Sci Total Environ 407:3681–3685

    Article  Google Scholar 

  • Ilmonen J, Myktä H, Virtanen R, Paasivirta L, Muotka T (2012) Responses of spring macroinvertebrate communities to habitat modification: community composition, specie richness and red-listed species. Freshw Sci 31(2):657–667

    Article  Google Scholar 

  • Isomäki E (2006) Pienet pohjavesilaitokset Suomessa. [Small bodies of groundwater in Finland] Vesitalous 3:11–15

  • Jakopanec I, Borgen K, Vold L, Lund H, Forseth T, Hannula R, Nygård K (2008) A large waterborne outbreak of campylobacteriosis in Norway: the need to focus on distribution system safety. BMC Infect Dis 8:128

  • Jyväsjärvi J, Marttila H, Rossi PM, Olofson B, Nisell J, Ala-Aho P, Ilmonen J, Virtanen R, Paasivirta L, Salmela J, Kløve B, Muotka T (2015) Climate-induced warming imposes a threat to North European spring ecosystems. Glob Chang Biol 21:4561–4569

    Article  Google Scholar 

  • Katko T, Lipponen MA, Rönkä ET (2006) Groundwater use and policy in community water supply in Finland. Hydrgeol J 14(1–2):69–78

    Article  Google Scholar 

  • Kløve B, Ala-Aho P, Bertrand G, Gurdak JJ, Kupfersberger H, Kvœrner J, Muotka T, Mykrä H, Preda E, Rossi P, Bertacchi Uvo C, Velasco E, Wachniew P, Pulido-Velázquez M (2014) Climate change impacts on groundwater and dependent ecosystems. J Hydrol 518:250–266

    Article  Google Scholar 

  • Knutsson G (2008) Hydrogeology in the Nordic countries. Episodes 31(1):148–154

    Google Scholar 

  • Kolehmainen RE, Korpela JP, Münster U, Puhakka JA, Tuovinen OH (2009) Extracellular enzyme activities and nutrient availability during artificial groundwater recharge. Water Res 43(2):405–416

    Article  Google Scholar 

  • Korkka-Niemi K (2001) Cumulative geological, regional and site-specific factors affecting groundwater quality in domestic wells in Finland. Monographs of the Boreal Environment Research, 20, Finnish Environment Institute, Helsinki, 98 pp

  • Krogulec E (2013) Intrinsic and specific vulnerability of groundwater in a river valley: assessment, verification and analysis of uncertainty. J Earth Sci Clim Chang 4:159. doi:10.4172/2157-7617.1000159

    Google Scholar 

  • Kubin E (1998) Leaching of nitrate nitrogen into the groundwater after clear felling and site preparation. Boreal Environ Res 3(3):3–8

    Google Scholar 

  • Kukkula M, Maunula L, Silvennoinen E, von Bonsdorff C-H (1999) Outbreak of viral gastroenteritis due to drinking water contamination by Norwalk-like viruses. J Infect Dis 180:1771–1776

    Article  Google Scholar 

  • Kuusi M, Nuorti JP, Hanninen ML, Koskela M, Jussila V, Kela E, Miettinen I, Ruutu P (2005) A large outbreak of campylobacteriosis associated with a municipal water supply in Finland. Epidemiol Infect 133(4):593–601

    Article  Google Scholar 

  • Kvitsand HML (2016) Drinking water supply form unconsolidated aquifers in cold climates: evaluation of factors influencing hygienic safety barriers emphasizing viruses. PhD Thesis, Norwegian University of Science and Technology, 62 pp

  • Kvitsand HML, Fiksdal L (2010) Waterborne disease in Norway: emphasizing outbreaks in groundwater systems. Water Sci Technol 61(3):563–571

    Article  Google Scholar 

  • Kvitsand HML, Ilyas A, Østerhus SW (2015) Rapid bacteriophage MS2 transport in an oxic sandy aquifer in cold climate: field experiments and modeling. Water Resour Res 51(12):9725–9745. doi:10.1002/2015WR017863

    Article  Google Scholar 

  • Laine J, Huovinen E, Virtanen MJ, Snellman M, Lumio J, Ruutu P, Kujansuu E, Vuento R, Pitkänen T, Miettinen I, Herrala J, Lepistö O, Antonen J, Helenius J, Hänninen ML, Maunula L, Mustonen J, Kuusi M (2010) An extensive gastroenteritis outbreak after drinking-water contamination by sewage effluent. Finl Epidemiol Infect 139(7):1105–1113

    Article  Google Scholar 

  • Lampi P, Vartiainen T, Tuomisto J, Hesso A (1990) Population exposure to chlorophenols, dibenzo-p-dioxin and dibenzofurans after a prolonged groundwater pollution by chlorophenols. Chemosphere 20:625–634

    Article  Google Scholar 

  • Lavapuro M, Lipponen A, Artimo A, Katko TS (2008) Groundwater sustainability indicators: testing with Finnish data. Boreal Environ Res 13(5):381–402

    Google Scholar 

  • Leclerc H, Shwartzbrod L, Dei-Cas E (2002) Microbial agents associated with waterborne diseases. Crit Rev Microbiol 28(4):371–409

    Article  Google Scholar 

  • Lindroos A-J, Kitunen V, Derome J, Helmisaari H-S (2002) Changes in dissolved organic carbon during artificial recharge of groundwater in a forested esker in southern Finland. Water Res 36(20):4951–4958

    Article  Google Scholar 

  • Loos R, Locoro G, Comero S, Contini S, Schwesig D, Werres F, Balsaa P, Gans O, Weiss S, Blaha L (2010) Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water. Water Res 44(14):4115–4126

    Article  Google Scholar 

  • Mäkinen R (2008) Drinking water quality and network materials in Finland. Summary report, Finnish Institute of Drinking Water/Prizztech, Pori, Finland, 83 pp

  • Maunula L, Miettinen IT, von Bonsdorff C-H (2005) Norovirus outbreaks from drinking water. Emerg Infect Dis 11(11):1716–1721

    Article  Google Scholar 

  • Mentzing LO (1981) Waterborne outbreaks of Campylobacter enteritis in central Sweden. Lancet 318:352–354

  • Miettinen IT, Zacheus O, von Bonsdorff C-H, Vartiainen T (2001) Waterborne epidemics in Finland in 1989–1990. Water Sci Technol 43(12):67–71

    Google Scholar 

  • Morris BL et al (2005) Use of groundwater age indicators in risk assessment to aid water supply operational planning. Water Environ Manag 19:41–48

    Article  Google Scholar 

  • Myrstad L, Nordheim CF, Janak K (2015) Vannrapport 122. Rapport fra Vannverksregisteret. Drikkevannsstatus (data 2011) [Water report 122: report of the Waterworks Registry—drinking water status (data 2011)]. Geological Survey of Norway, Oslo

  • NFSA (2011) Veiledning til Drikkevannsforskriften av 2001 [Guidelines for drinking water regulations 2001]. Norwegian Food Safety Agency, Oslo

    Google Scholar 

  • Noyes PD, McElwee MK, Miller HD, Clark BW, Van Tiem LA, Walcott KC, Erwin KN, Levin ED (2009) The toxicology of climate change: environmental contaminants in a warming world. Environ Int 35(6):971–986

    Article  Google Scholar 

  • Ojala L, Ahlström L, Maxe L (2007) Vattenskyddsområden: en sammanställning februari 2007 [Water protection: a compilation February 2007]. SGU-rapport 2007–12, Geological Survey of Sweden, Uppsala, Sweden

  • Okkonen J, Kløve B (2011) A sequential modelling approach to assess groundwater-surface water resources in a snow dominated region of Finland. J Hydrol 411(1–2):91–107

    Article  Google Scholar 

  • Okkonen J, Jyrkama M, Kløve B (2010) A climate change assessment framework for ground water. Hydrgeol J 18(2):429–439

    Article  Google Scholar 

  • Pitkänen T (2013) Review of Campylobacter spp. in drinking and environmental waters. J Microbiol Methods 95:39–47

    Article  Google Scholar 

  • Pitkänen T, Miettinen IT, Nakari UM, Takkinen J, Nieminen K, Siitonen A, Kuusi M, Holopainen A, Hänninen ML (2008) Faecal contamination of a municipal drinking water distribution system in association with Campylobacter jejuni infections. J Water Health 6(3):365–376

    Article  Google Scholar 

  • Pitkänen T, Karinen P, Miettinen IT, Lettojärvi H, Heikkilä A, Maunula R, Aula V, Kuronen H, Nousiainen L-L, Pelkonen S, Heinonen-Tanski H (2011) Microbial contamination of groundwater at small community water supplies in Finland. AMBIO 40(4):377–390. doi:10.1007/s13280-010-0102-8

    Article  Google Scholar 

  • Pitkänen T, Juselius T, Isomäki E, Miettinen IT, Valve M, Kivimäki A-L, Lahti K, Hänninen M-L (2015) Drinking water quality and occurrence of Giardia in Finnish small groundwater supplies. Resources 4(3):637–654. doi:10.3390/resources4030637

    Article  Google Scholar 

  • Rautelin H, Sappinen O, Jahkola M, Saloranta K, Rantanen B, Kosunen T (1986) Campylobacter epidemic in Virrat in the summer of 1985. Duodecim 102:629–635

  • Rautelin H, Koota K, von Essen R, Jahkola M, Siitonen A, Kosunen TU (2009) Waterborne Campylobacter jejuni epidemic in a Finnish hospital for rheumatic diseases. Scand J Infect Dis 22(3):321–326

  • Riera-Montes M, Sjölander B, Allestam G, Hallin E, Hedlund KO, Löfdahl M (2011) Waterborne norovirus outbreak in a municipal drinking-water supply in Sweden. Epidemiol Infect 139(12):1928–35

  • Rossi PM, Ala-aho P, Ronkanen A-K, Kløve B (2012) Groundwater–surface water interaction between an esker aquifer and a drained fen. J Hydrol 432–433:52–60

    Article  Google Scholar 

  • Rossi PM, Ala-aho P, Doherty J, Kløve B (2014) Impact of peatland drainage and restoration on esker groundwater resources: modeling future scenarios for management. Hydrgeol J 22:1131–1145

    Article  Google Scholar 

  • Rossi PM, Marttila H, Jyväsjärvi J, Ala-aho P, Isokangas E, Muotka T, Klove B (2015) Environmental conditions of boreal springs explained by capture zone characteristics. J Hydrol 531:992–1002

    Article  Google Scholar 

  • SGU (2016a) Groundwater. http://www.sgu.se/en/groundwater/. Accessed June 2016

  • SGU (2016b) Vattenförvaltning [Water management]. http://www.sgu.se/grundvatten/vattenforvaltning/. Accessed June 2016

  • Sigurdsson F, Einarsson K (1988) Groundwater resources of Iceland: availability and demand. Jökull 38:35–54

    Google Scholar 

  • Stewart M, Trompetter V, van der Raaij R (2002) Age and source of Canterbury plains groundwater, Report no. U02/30, Environment Canterbury, Christchurch, New Zealand, 46 pp

  • Stigter TY, Ribeiro L, Carvalho Dill AMM (2006) Evaluation of an intrinsic and a specific vulnerability assessment method in comparison with groundwater salinisation and nitrate contamination levels in two agricultural regions in the south of Portugal. Hydrogeol J 14:79–99. doi:10.1007/s10040-004-0396-3

    Article  Google Scholar 

  • Takalo H (2011) Groundwater vulnerability assessment using DRASTIC model in Kourinkangas (A) and Lähteenkangas, sensitivity analysis and DRASTIC in groundwater protection plans (in Finnish with English abstract). MSc Thesis, University of Oulu, Oulu, Finland, 84 pp

  • Thorsteinsson SB, Björnsson BL, Greipsson S, Steingrimsson O (1985) Campylocacter jejuni-faraldur á Stöðvarfirðdi vegna mengaðs vatnsbóls í júní 1994. Læknabladid 71:182–6

  • Vannportalen (2016) Harmonisation and implementation of the WFD in the Nordic countries. http://www.vannportalen.no/english/harmonisation-and-implementation-of-the-wfd-in-the-nordic-countries/ Accessed June 2016

  • Vestergaard LS, Olsen KE, Stensvold CR, Böttiger BE, Adelhardt M, Lisby M, Mørk L, Mølbak K (2007) Outbreak of severe gastroenteritis with multiple aetiologies caused by contaminated drinking water in Denmark, January 2007. Eurosurveillance 12(13)

  • Vrba J, Zaporozec A (eds) (1994) Guidebook on mapping groundwater vulnerability, vol 16. In: International Contributions to Hydrogeology, Heise, Hannover, Germany, 131 pp

  • Wachniew P (2015) Environmental tracers as a tool in groundwater vulnerability assessment. Ital J Groundw AS13059:019–025. doi:10.7343/AS-108-15-0135

    Google Scholar 

  • Wallin A (2016) Groundwater extraction for drinking water: a comparison of risks and problems in technical, environmental and social issues (in Finnish). MSc Thesis, University of Oulu, Oulu, Finland

  • Wheaton J, Bohman B (1999) Geophysical investigations of cased well completions. Ground Water Monit Rem 143–151

  • WHO (2004) Guidelines for drinking-water quality, vol 1: recommendations. World Health Organization, Geneva

  • Zacheus O, Miettinen IT (2011) Increased information on waterborne outbreaks through efficient notification system enforces actions towards safe drinking water. J Water Health 9:763–772

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bjørn Kløve.

Additional information

Published in the special issue “Hydrogeology and Human Health”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kløve, B., Kvitsand, H.M.L., Pitkänen, T. et al. Overview of groundwater sources and water-supply systems, and associated microbial pollution, in Finland, Norway and Iceland. Hydrogeol J 25, 1033–1044 (2017). https://doi.org/10.1007/s10040-017-1552-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-017-1552-x

Keywords

Navigation