Skip to main content
Log in

The impact of hillslope groundwater dynamics and landscape functioning in event-flow generation: a field study in the Rietholzbach catchment, Switzerland

Incidence de l’hydrodynamique souterraine des pentes et des fonctionnalités du paysage sur la génération d’un évènement hydrologique: étude de terrain dans le bassin versant du Rietholzbach, Suisse

El impacto de la dinámica del agua subterránea de las laderas y el funcionamiento del paisaje en la generación de eventos de flujo: un estudio de campo en la cuenca de Rietholzbach, Suiza

事件流生成中山坡地下水动力学和地形功能的影响:瑞士Rietholzbach流域的一个研究实例

Impacte da dinâmica hidrogeológica em vertentes e do funcionamento da paisagem na geração de eventos de escoamento: um estudo de campo na bacia hidrográfica de Rietholzbach, Suíça

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

A reliable prediction of hydrograph responses in mountainous headwater catchments requires a mechanistic understanding of the coupled hydro-climatic processes in these regions. This study shows that only a small fraction of the total area in a pre-Alpine headwater catchment actively regulates streamflow responses to hydro-climatic forcing, which facilitates the application of a parsimonious framework for hydrograph time-series prediction. Based on landscape analysis and hydrometric data from the Upper Rietholzbach catchment (URHB, 0.94 km2, northeast Switzerland), a conceptual model was established. Here, the rainfall-event-driven contribution of surface runoff and subsurface flow (event flow) accounts for around 50 % of total river discharge. The event-flow hydrograph is generated from approximately 25 % of the entire area consisting of riparian zones (8 %) and adjacent hillslopes (17 %), each with characteristic streamflow-generating mechanisms. Baseflow generation is attributed to deep groundwater discharge from a fractured-rock aquifer covering ∼75 % of the catchment area. A minimalistic model, that represents event flow as depletion of two parallel linear reservoirs, verified the conceptual model of the URHB with adequate hydrograph simulations  (R 2 = 0.67, Nash-Sutcliffe efficiency (NSE) = 0.64). Hereby, the expansion of the event-flow contributing areas was found to be particularly significant during long and high-intensity rainfall events. These findings provide a generalized approach for the large-scale characterization of groundwater recharge and hydrological behavior of mountainous catchments with similar landscape properties.

Résumé

Une prédiction fiable des réponses hydrologiques dans les bassins versants amont de montagne nécessite une appréhension mécaniste des processus couplés hydroclimatiques dans ces régions. La présente étude montre que seule une petite fraction de la surface totale d’un bassin versant amont des Préalpes régule activement les réponses de l’écoulement au forçage hydro-climatique, ce qui rend possible l’utilisation d’un cadre parcimonieux pour la prédiction des chroniques hydrologiques. Sur la base d’une analyse du paysage et des données hydrométriques relatives au bassin versant du Haut Rietholzbach (HRHB, 0.94 km2, Nord Est de la Suisse) un modèle conceptuel a été élaboré. Ici la contribution du ruissellement de surface et de l’écoulement de subsurface (l’évènement hydrologique), induite par un évènement pluvieux, atteint environ 50 % du débit total de la rivière. L’hydrogramme en réponse à un événement pluvieux est généré par environ 25 % de la surface totale, qui comprend les zones riveraines du cours d’eau (8 %) et les versants adjacents (17 %), chacun ayant des mécanismes spécifiques de génération de l’écoulement. La génération de l’écoulement de base est attribuée à la décharge des eaux souterraines profondes depuis un aquifère de roches fracturées couvrant à peu près 75 % du bassin versant. Un modèle minimaliste, qui représente l’évènement hydrologique comme la vidange de deux réservoirs en parallèle à réponse linéaire, conforte le modèle conceptuel du HRHB, avec des simulations  hydrologiques satisfaisantes (R 2 = 0.67, coefficient d’efficacité Nash-Sutcliffe (CENS) = 0.64). En l’espèce, l’extension des zones contribuant à la réponse hydrologique à un événement pluvieux s’est trouvée être particulièrement importante pendant les évènements pluvieux de longue durée et de forte intensité. Ces conclusions conduisent à une approche généralisée de la caractérisation à grande échelle de la recharge des eaux souterraines et du comportement hydrologique des bassins versants de montagne présentant des propriétés paysagères similaires.

Resumen

Una predicción confiable de la respuesta de los hidrogramas en las cabeceras de cuencas montañosas requiere una comprensión de la mecánica de los procesos hidroclimáticos acoplados en estas regiones. Este estudio muestra que sólo una pequeña fracción del área total en la cabecera de una cuenca prealpina regula activamente las respuestas de los caudales a las forzantes hidroclimáticas, lo cual facilita la aplicación de una estructura parsimoniosa para la predicción de hidrogramas de series temporales. Se estableció un modelo conceptual en base al análisis del paisaje y a los datos hidrométricos de la cuenca superior de Rietholzbach (URHB, 0.94 km2, noreste de Suiza). En este caso, la contribución del evento de lluvia al flujo superficial y subsuperficial (flujo del evento) representa alrededor del 50 % de la descarga total del río. El hidrograma del flujo de la crecida se genera a partir de aproximadamente el 25 % de toda el área que comprende zonas riparianas (8 %) y ladera adyacentes (17 %), cada una con mecanismos generadores de caudales característicos. La generación del flujo de base se atribuye a la descarga de agua subterránea profunda a un acuífero de roca fracturada que cubre ∼75 % del área de la cuenca. Un modelo minimalista, que representa el flujo de la crecida como un agotamiento de dos reservorios lineares paralelos, verificó el modelo conceptual de la URHB con simulaciónes  adecuadas de hidrogramas (R 2 = 0.67, eficiencia de Nash-Sutcliffe (NSE) = 0.64). Por esto, se encontró que la expansión de las aéreas de contribución del evento de crecida resultó particularmente significativa durante eventos largos y de alta intensidad de la precipitación. Estos resultados proporcionan un enfoque generalizado para la caracterización a gran escala de la recarga de agua subterránea y el comportamiento hidrológico de cuencas montañosos con propiedades similares de paisaje.

摘要

山区源头流域水位图响应的可靠预测需要机械理解这些地区的耦合水文气候过程。这项研究显示,阿尔卑斯山前流域内整个地区只有很小一部分积极地调控河流对水文气候的响应,而水文气候强迫性促进了水文图时间序列预测质量较差框架的应用。在Rietholzbach上游流域(瑞士东北部0.94 km2)测定比重资料和地形分析的基础上,建立了一个概念模型。在模型里,降雨事件驱动的地表水径流和潜流(事件流)贡献率占整个河流排泄量的大约50 %。事件流水文图依靠整个地区大约25 %的地区生成的,这25 %的地区包括河岸带(8 %)和毗连的山坡(17 %),每个地区都具特有的河流生成机理。基流的生成归因于覆盖流域区75%的断裂岩层含水层的深层地下水排泄。一个展现两个平行线性储水地枯竭的事件流简约模型采用适当的水文图预测结果(R 2 = 0.67,Nash-Sutcliffe效率 (NSE) =0.64)验证了Rietholzbach上游流域的概念模型。据此,发现事件流贡献区的扩张在长时间和高强度的降雨事件期间特别重要。这些发现为大尺度描述具有类似地形特性的山区流域的地下水补给和水文特征提供了一个广义上的方法。

Resumo

Uma predição confiável das respostas em hidrograma nas partes superiores das bacias hidrográficas em zonas montanhosas requer, nestas regiões, uma compreensão mecanicista dos processos hidroclimáticos acoplados. Este estudo mostra que somente uma pequena fração da área total da parte superior de uma bacia hidrográfica pré-Alpina regula ativamente as respostas do escoamento fluvial à imposição hidroclimática, o que facilita a aplicação de um esquema simples para a predição de hidrogramas de séries de tempo. Foi estabelecido um modelo concetual com base na análise da paisagem e em dados hidrométricos da bacia superior do Rietholzbach (URHB, 0.94 km2, nordeste da Suíça). Aqui, a contribuição do evento induzido pela precipitação no escoamento superficial e subsuperficial (evento de escoamento) é responsável por cerca de 50 % do escoamento fluvial total. O hidrograma do evento de escoamento é gerado a partir de aproximadamente 25 % da área total, consistindo das zonas ripícolas (8 %) e das vertentes adjacentes (17 %), cada uma com os seus mecanismos de geração de escoamento fluvial caraterísticos. O caudal de base é atribuído à descarga de água subterrânea profunda de um aquífero fraturado que cobre ∼75 % da área da bacia. Um modelo minimalista, que representa o evento de escoamento como o esvaziamento de dois reservatórios lineares paralelos, confirmou o modelo concetual da URHB, através de adequadas simulaçãoes do hidrograma (R 2 = 0.67, coeficiente de eficiência de Nash-Sutcliffe (NSE) = 0.64). Desta forma, descobriu-se que a expansão das áreas contribuintes para eventos de escoamento era particularmente significativa quando ocorriam eventos pluviosos prolongados e de alta intensidade. Estes resultados proporcionam uma abordagem generalizada para a caraterização em grande escala da recarga da água subterrânea e do comportamento hidrológico de bacias hidrográficas de montanha com propriedades de paisagem similares.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • ASTM (2013) D3385-09 Standard test method for infiltration rate of soils in field using double-ring infiltrometer. ASTM, West Conshohocken, PA

  • Ali G, Oswald CJ, Spence C, Cammeraat ELH, McGuire KJ, Meixner T, Reaney SM (2013) Towards a unified threshold-based hydrological theory: necessary components and recurring challenges. Hydrol Process 27:313–318. doi:10.1002/hyp.9560

    Article  Google Scholar 

  • Bachmair S, Weiler M (2011) New dimensions of hillslope hydrology. In: Levia DF, Carlyle-Moses D, Tanaka T (eds) Forest hydrology and biogeochemistry, synthesis of past research and future directions, ecological studies, vol 216. Springer, The Netherlands

    Google Scholar 

  • Balderer W (1984) Hydrogeologie des Murgtales (Kt. Thurgau) [Hydrology of the Murg valley (Canton Thurgau)]. PhD Thesis, University of Neuchâtel, Switzerland, 969 pp

  • Balderer W (1983) Hydrogeologie der Oberen Süßwassermolasse im Einzugsgebiet des Aubaches (Schweiz) [Hydrogeology of the Upper Freshwater Molasse in the Aubach catchment (Switzerland)]. Steirische Beitr Hydrogeol 34(35):15–54

    Google Scholar 

  • Balderer W (1984) Hydrogeologische Gesamtsysteme in quartären Lockergesteinsablagerungen [Hydrogeological systems in Quaternary unconsolidated deposits]. Steirische Beitr Hydrogeol 36:115–125

    Google Scholar 

  • Basu NB, Rao PSC, Winzeler HE, Kumar S, Owens P, Merwade V (2010) Parsimonious modeling of hydrologic responses in engineered watersheds: structural heterogeneity versus functional homogeneity. Water Resour Res 46, W04501. doi:10.1029/2009wr007803

    Google Scholar 

  • Beven K (2001) How far can we go in distributed hydrological modelling? Hydrol Earth Syst Sci 5:1–12

    Article  Google Scholar 

  • Beven K, Kirkby MJ (1979) A physically based, variable contributing area model of basin hydrology. Hydrol Sci Bull 24:43–69

    Article  Google Scholar 

  • Blöschl G (2011) Scaling and regionalization in hydrology. In: Wilderer P (ed) Treatise on water science. Elsevier, Amsterdam, pp 215–236

  • Botter G, Porporato A, Rodriguez-Iturbe I, Rinaldo A (2007) Basin-scale soil moisture dynamics and the probabilistic characterization of carrier hydrologic flows: slow, leaching-prone components of the hydrologic response. Water Resour Res 43, W02417. doi:10.1029/2006wr005043

    Google Scholar 

  • Bouwer H, Rice RC (1976) A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resour Res 12:423–428. doi:10.1029/WR012i003p00423

    Article  Google Scholar 

  • Brutsaert W (2005) Hydrology: an introduction. Cambrige University Press, New York

    Book  Google Scholar 

  • Carey SK, Tetzlaff D, Seibert J, Soulsby C, Buttle J, Laudon H, McDonnell J, McGuire K, Cassie D, Shanley J, Kennedy M, Devito K, Pomeroy JW (2010) Inter-comparison of hydro-climatic regimes across northern catchments: synchronicity, resistance and resilience. Hydrol Process 24:3591–3602. doi:10.1002/hyp.7880

    Article  Google Scholar 

  • Dahlke HE, Easton ZM, Fuka DR, Lyon SW, Steenhuis TS (2009) Modelling variable source area dynamics in a CEAP watershed. Ecohydrology 2:337–349. doi:10.1002/Eco.58

    Article  Google Scholar 

  • Dahlke HE, Easton ZM, Walter MT, Steenhuis TS (2012) Field test of the variable source area interpretation of the curve number rainfall-runoff equation. J Irrig Drain Eng 138:235–244. doi:10.1061/(Asce)Ir.1943-4774.0000380

    Article  Google Scholar 

  • Dingman SL (2002) Physical hydrology, 2nd edn. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Doppler T, Camenzuli L, Hirzel G, Krauss M, Luck A, Stamm C (2012) Spatial variability of herbicide mobilisation and transport at catchment scale: insights from a field experiment. Hydrol Earth Syst Sci 16:1947–1967. doi:10.5194/Hess-16-1947-2012

    Article  Google Scholar 

  • Dunne T, Black RD (1970) Partial area contributions to storm runoff in a small New-England watershed. Water Resour Res 6:1296–1311. doi:10.1029/Wr006i005p01296

    Article  Google Scholar 

  • Ewen T, Lehner I, Seibert J, Seneviratne SI (2011) Climate patterns in the long-term hydrometeorological data series of the Rietholzbach catchment. Bodenkultur 62:53–58

    Google Scholar 

  • Gall HE (2013) Landscape filtering of hydrologic and biogeochemical responses in managed catchments. Landsc Ecol 28:651–664. doi:10.1007/S10980-012-9829-X

    Article  Google Scholar 

  • Gburek WJ, Drungil CC, Srinivasan MS, Needelman BA, Woodward DE (2002) Variable-source-area controls on phosphorus transport: bridging the gap between research and design. J Soil Water Conserv 57:534–543

    Google Scholar 

  • Germann PF (1981) Untersuchungen über den Bodenwasserhaushalt im hydrologischen Einzugsgebiet Rietholzbach [Studies on the soil water balance in the Rietholzbach catchment]. Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der ETH, Zürich, 51 pp

  • Gharari S, Hrachowitz M, Fenicia F, Savenije HHG (2011) Hydrological landscape classification: investigating the performance of HAND based landscape classifications in a central European meso-scale catchment. Hydrol Earth Syst Sci 15:3275–3291. doi:10.5194/Hess-15-3275-2011

    Article  Google Scholar 

  • Ghasemizade M, Schirmer M (2013) Subsurface flow contribution in the hydrological cycle: lessons learned and challenges ahead—a review. Environ Earth Sci 69:707–718. doi:10.1007/S12665-013-2329-8

    Article  Google Scholar 

  • Graham CB, Woods RA, McDonnell JJ (2010) Hillslope threshold response to rainfall: (1) a field based forensic approach. J Hydrol 393:65–76. doi:10.1016/J.Jhydrol.2009.12.015

    Article  Google Scholar 

  • Gupta VK, Waymire E, Wang CT (1980) A representation of an instantaneous unit-hydrograph from geomorphology. Water Resour Res 16:855–862. doi:10.1029/Wr016i005p00855

    Article  Google Scholar 

  • Gurtz J, Verbunt M, Zappa M, Moesch M, Pos F, Moser U (2003a) Long-term hydrometeorological measurements and model-based analyses in the hydrological research catchment Rietholzbach. J Hydrol Hydromechan 51:162–174

    Google Scholar 

  • Gurtz J, Zappa M, Jasper K, Lang H, Verbunt M, Badoux A, Vitvar T (2003b) A comparative study in modelling runoff and its components in two mountainous catchments. Hydrol Process 17:297–311. doi:10.1002/hyp.1125

    Article  Google Scholar 

  • Healy RW, Scanlon BR (2010) Estimating groundwater recharge. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Heidbüchel I, Troch PA, Lyon SW, Weiler M (2012) The master transit time distribution of variable flow systems. Water Resour Res 48. doi:10.1029/2011wr011293

  • James AL, Roulet NT (2009) Antecedent moisture conditions and catchment morphology as controls on spatial patterns of runoff generation in small forest catchments. J Hydrol 377:351–366. doi:10.1016/j.jhydrol.2009.08.039

    Article  Google Scholar 

  • Jaun S (2003) Evapotranspiration und Strahlungskomponenten im Forschungsgebiet Rietholzbach [Evapotranspiration and radiation in the Rietholzbach research catchment]. Diploma Thesis, Swiss Federal Institute of Technology Zurich (ETH), Zurich, Switzerland

  • Kirchner JW (2003) A double paradox in catchment hydrology and geochemistry. Hydrol Process 17:871–874. doi:10.1002/Hyp.5108

    Article  Google Scholar 

  • Koenig P, Lang H, Schwarze R (1994) On the runoff formation in the small pre-alpine research basin Rietholzbach FRIEND: flow regimes from International Experimental and Network Data (Proceedings of the Braunschweig Conference, October 1993) IAHS Publ. no. 221, IAHS, Wallingford, UK, pp 391–398

  • Lyon SW, McHale MR, Walter MT, Steenhuis TS (2006) The impact of runoff generation mechanisms on the location of critical source areas. J Am Water Resour Assoc 42:793–804. doi:10.1111/J.1752-1688.2006.Tb04493.X

    Article  Google Scholar 

  • Martina MLV, Entekhabi D (2006) Identification of runoff generation spatial distribution using conventional hydrologic gauge time series. Water Resour Res 42, W08431. doi:10.1029/2005wr004783

    Google Scholar 

  • McGlynn BL, Seibert J (2003) Distributed assessment of contributing area and riparian buffering along stream networks. Water Resour Res 39:1082. doi:10.1029/2002wr001521

    Google Scholar 

  • McGlynn BL, McDonnell JJ, Seibert J, Kendall C (2004) Scale effects on headwater catchment runoff timing, flow sources, and groundwater-streamflow relations. Water Resour Res 40. doi:10.1029/2003wr002494

  • McGrath GS, Hinz C, Sivapalan M (2007) Temporal dynamics of hydrological threshold events. Hydrol Earth Syst Sci 11:923–938

    Article  Google Scholar 

  • MeteoSchweiz (2013) Klimaszenarien Schweiz—eine regionale Übersicht. Fachbericht MeteoSchweiz Nr 243. [Climate scenarios of Switzerland—a regional overview. Technical Report MeteoSwiss No 243]. Swiss Federal Office for the Environment (FOEN), Bern, Switzerland, 36 pp

  • Mittelbach H, Lehner I, Seneviratne SI (2012) Comparison of four soil moisture sensor types under field conditions in Switzerland. J Hydrol 430:39–49. doi:10.1016/J.Jhydrol.2012.01.041

    Article  Google Scholar 

  • Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50:885–900

    Article  Google Scholar 

  • Nathan RJ, McMahon TA (1990) Evaluation of automated techniques for base-flow and recession analyses. Water Resour Res 26:1465–1473. doi:10.1029/Wr026i007p01465

    Article  Google Scholar 

  • Penna D, Tromp-van Meerveld HJ, Gobbi A, Borga M, Dalla Fontana G (2011) The influence of soil moisture on threshold runoff generation processes in an alpine headwater catchment. Hydrol Earth Syst Sci 15:689–702. doi:10.5194/hess-15-689-2011

    Article  Google Scholar 

  • Philip JR (1957) The theory of infiltration: 4. sorptivity and algebraic infiltration equations. Soil Sci 84:257–264

    Article  Google Scholar 

  • Posavec K, Parlov J, Nakic Z (2010) Fully automated objective-based method for master recession curve separation. Ground Water 48:598–603. doi:10.1111/J.1745-6584.2009.00669.X

    Article  Google Scholar 

  • Rinaldo A, Beven KJ, Bertuzzo E, Nicotina L, Davies J, Fiori A, Russo D, Botter G (2011) Catchment travel time distributions and water flow in soils. Water Resour Res 47, W07537. doi:10.1029/2011wr010478

    Google Scholar 

  • Rodriguez-Iturbe I, Porporato A, Ridolfi L, Isham V, Cox DR (1999) Probabilistic modelling of water balance at a point: the role of climate, soil and vegetation. Proc Roy Soc A Math Phys 455:3789–3805

    Article  Google Scholar 

  • Seibert J, McGlynn BL (2005) Landscape element contributions to storm runoff. In: Anderson MG, McDonnell G (ed) Encyclopedia of hydrological sciences. pp 1751–1761

  • Seneviratne SI, Lehner I, Gurtz J, Teuling AJ, Lang H, Moser U, Grebner D, Menzel L, Schroff K, Vitvar T, Zappa M (2012) Swiss prealpine Rietholzbach research catchment and lysimeter: 32 year time series and 2003 drought event. Water Resour Res 48, W06526. doi:10.1029/2011wr011749

    Google Scholar 

  • Sivapalan M (2003) Process complexity at hillslope scale, process simplicity at the watershed scale: is there a connection? Hydrol Process 17:1037–1041. doi:10.1002/Hyp.5109

    Article  Google Scholar 

  • Tetzlaff D, Soulsby C, Bacon PJ, Youngson AF, Gibbins C, Malcolm IA (2007) Connectivity between landscapes and riverscapes: a unifying theme in integrating hydrology and ecology in catchment science? Hydrol Process 21:1385–1389. doi:10.1002/hyp.6701

    Article  Google Scholar 

  • Teuling AJ, Lehner I, Kirchner JW, Seneviratne SI (2010) Catchments as simple dynamical systems: experience from a Swiss prealpine catchment. Water Resour Res 46, W10502. doi:10.1029/2009wr008777

    Google Scholar 

  • Thompson SE, Basu NB, Lascurain J, Aubeneau A, Rao PSC (2011) Relative dominance of hydrologic versus biogeochemical factors on solute export across impact gradients. Water Resour Res 47, W00J05. doi:10.1029/2010wr009605

    Google Scholar 

  • Vitvar T, Balderer W (1997) Estimation of mean water residence times and runoff generation by O-18 measurements in a pre-Alpine catchment (Rietholzbach, eastern Switzerland). Appl Geochem 12:787–796. doi:10.1016/S0883-2927(97)00045-0

    Article  Google Scholar 

  • Viviroli D, Weingartner R, Messerli B (2003) Assessing the hydrological significance of the world’s mountains. Mt Res Dev 23:32–40. doi:10.1659/0276-4741(2003)023[0032:Athsot]2.0.Co;2

    Article  Google Scholar 

  • von Freyberg J, Radny D, Gall HE, Schirmer M (2014) Implications of hydrologic connectivity between hillslopes and riparian zones on streamflow composition. J Contam Hydrol 169:62–74. doi:10.1016/j.jconhyd.2014.07.005

  • Woodbury JD, Shoemaker CA, Easton ZM, Cowan DM (2014) Application of SWAT with and without variable source area hydrology to a large watershed. J Am Water Resour Assoc 50:42–56. doi:10.1111/Jawr.12116

    Article  Google Scholar 

  • Zehe E, Sivapalan M (2009) Threshold behaviour in hydrological systems as (human) geo-ecosystems: manifestations, controls, implications. Hydrol Earth Syst Sci 13:1273–1297

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the Swiss National Science Foundation (SNF, Projects No. 200021_129735 and 200020_143688). Additional financial support was provided by the Competence Center Environment and Sustainability (CCES) of the ETH domain in the framework of the RECORD—Assessment and Modeling of Coupled Ecological and Hydrological Dynamics in the Restored Corridor of a River (Restored Corridor Dynamics)—and RECORD Catchment projects. Parts of the data analysis and modeling were completed in collaboration with P.S.C. Rao while the first author (J. v. Freyberg) was at Purdue University, and supported, in part, by the Lee A. Reith Endowment in the Lyle School of Civil Engineering, Purdue University. We would like to thank S. Basso, B. Doulatyari, H. Gall, B. Kianfar, I. Lehner, R. Mégroz, A. Raffainer and C. Wigger for their support during fieldwork and data analysis. The group of S. Seneviratne (Land-Climate-Dynamics), Institute for Atmospheric and Climate Science (IAC), Swiss Federal Institute of Technology Zurich (ETHZ) provided data from the meteorological station Büel (lysimeter seepage, rainfall, evapotranspiration) and gauging station Upper Rietholzbach (URHB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana von Freyberg.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 786 kb)

Appendix

Table 2 Table of abbreviations and model parameters

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

von Freyberg, J., Rao, P.S.C., Radny, D. et al. The impact of hillslope groundwater dynamics and landscape functioning in event-flow generation: a field study in the Rietholzbach catchment, Switzerland. Hydrogeol J 23, 935–948 (2015). https://doi.org/10.1007/s10040-015-1238-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-015-1238-1

Keywords

Navigation