Skip to main content
Log in

Effects of rainwater-harvesting-induced artificial recharge on the groundwater of wells in Rajasthan, India

Incidence de la recharge artificielle par ruissellement sur l’eau de la nappe et sur des puits du Rajasthan, Inde

Efectos en la recarga artificial inducida por la recolección de agua de lluvia en las aguas subterráneas de pozos en Rajasthan, India

印度Rajasthan省雨水收集诱发的人工补给井水的效果

Efeitos da recarga artificial induzida em colectores de águas pluviais nas águas subterrâneas de captações do Rajastão, Índia

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

In light of the increasing deterioration of groundwater supplies in Rajasthan, India, rainwater harvesting practices in southern Rajasthan were studied to determine the effects of artificially recharged groundwater on the supply and quality of local groundwater. A physical and geochemical investigation utilizing environmental tracers (δ18O and Cl), groundwater level and groundwater quality measurements, and geological surveys was conducted with two objectives: (1) to quantify the proportion of artificially recharged groundwater in wells located near rainwater harvesting structures and (2) to examine potential effects of artificial recharge on the quality of groundwater in these wells. A geochemical mixing model revealed that the proportion of artificial recharge in these wells ranged from 0 to 75%. Groundwater tracer, water table, and geological data provided evidence of complex groundwater flow and were used to explain the spatial distribution of artificial recharge. Furthermore, wells receiving artificial recharge had improved groundwater quality. Statistical analysis revealed a significant difference between the water quality in these wells and wells determined not to receive artificial recharge, for electrical conductivity and SO 4 . The findings from this study provide quantitative evidence that rainwater harvesting structures in southern Rajasthan influence the groundwater supply and quality of nearby wells by artificially recharging local groundwater.

Résumé

Par suite de la détérioration croissante des ressources en eau souterraine, on a étudié le mode de réalimentation d’une nappe du Sud Rajasthan, Inde, pour évaluer localement les effets quantitatifs et qualitatifs de la recharge artificielle. Des investigations avec levers géologiques, études physique et géochimique utilisant des traceurs environnementaux (δ18O and Cl), étude de niveau et de qualité de la nappe, ont été menées avec deux objectifs: (1) évaluer la proportion d’eau de recharge artificielle dans les puits proches des aires de recharge et (2) examiner l’incidence de la recharge artificielle sur la qualité de l’eau de ces puits. Un modèle géochimique multiparamétrique a révélé que la proportion de recharge artificielle dans ces puits s’échelonne de 0 à 75%. Les traçages, la piézométrie et les données géologiques ont montré la complexité de écoulements souterrains et permis de comprendre la distribution spatiale de la recharge. Par ailleurs, les puits rechargés artificiellement présentent une eau de meilleur qualité. L’analyse statistique a révélé une importante différence de qualité entre ces puits et ceux connus pour ne pas recevoir de recharge artificielle, en termes de conductivité électrique et de concentration SO 4 . Les résultats quantitatifs de cette étude montrent que la réalimentation artificielle de nappe au Sud Rajasthan influence la productivité et la qualité de l’eau des puits proches de la zone de recharge.

Resumen

A la luz del creciente deterioro del abastecimiento de aguas subterráneas en Rajasthan, India, las prácticas de recolección de agua de lluvia en el sur de Rajasthan fueron estudiadas para determinar los efectos de las aguas recargadas artificialmente en el abastecimiento y calidad del agua subterránea local. Una investigación física y geoquímica utilizando medidas de trazadores ambientales (δ18O and Cl), niveles de aguas subterráneas y de calidad de las aguas subterráneas, y relevamientos geológicos fueron llevados a cabo con dos objetivos: (1) cuantificar la proporción de agua subterránea recargada artificialmente en pozos localizados cerca de estructuras de recolección de agua de lluvia y (2) examinar los efectos potenciales de la recarga artificial sobre la calidad del agua subterránea de estos pozos. Un modelo de mezcla geoquímica reveló que la proporción de recarga artificial en estos pozos variaba de 0 a 75%. Los trazadores de agua subterránea, el nivel freático, y los datos geológicos proveyeron evidencias de un flujo subterráneo complejo y fueron usados para explicar la distribución espacial de la recarga artificial. Además, los pozos receptores de la recarga artificial había mejorado la calidad del agua subterránea. Los análisis estadísticos revelaron una significativa diferencia entre la calidad del agua en estos pozos y aquellos que se determinaron que no recibieron recarga artificial, desde el punto de vista de la conductividad eléctrica y los sulfatos. Los hallazgos de este estudio proveen evidencias cuantitativas que la estructura recolectoras de agua de lluvia en el sur de Rajasthan influyen en el abastecimiento de agua subterránea y en la calidad de los pozos cercanos por el agua subterránea local recargada artificialmente.

摘要

鉴于印度Rajasthan省的地下水供水能力持续降低, 对Rajasthan省南部的雨水收集试验进行了研究, 以确定人工地下水补给对当地地下水供应和水质的影响。 应用环境示踪剂 (δ18O和Cl)、地下水位和地下水质观测、地质调查等物理和地球化学调查方法, 达到了两个目标: (1) 确定雨水收集设备附近井中地下水人工补给的比例(2) 研究人工补给对这些井中地下水水质的潜在影响。地球化学混合模式揭示, 这些井中人工补给比例为0到75%。地下水示踪剂、地下水位和地质资料提供了复杂的地下水流的证据, 并用来解释人工补给的空间分布。另外, 接受人工补给的井中地下水水质有所改善。 通过电导率和SO 4 的统计分析, 这些井的水质和那些没有接受人工补给的井存在显著差异。本次研究结果提供了定量证据, 证明Rajasthan省南部的雨水收集设备通过人工补给当地地下水, 影响到周围井的地下水供水和水质。

Resumo

Face à crescente deterioração do abastecimento de águas subterrâneas no Rajastão, Índia, foram estudadas práticas de armazenamento de águas pluviais no sul do Rajastão, para determinar os efeitos da recarga artificial no abastecimento e qualidade das águas subterrâneas locais. Foi conduzida uma investigação físico-química baseada em traçadores ambientais (δ18O e Cl), em medições do nível e da qualidade da água subterrânea, e em levantamentos geológicos, com dois objectivos: (1) quantificar a proporção de águas subterrâneas de infiltração artificial em captações próximas de estruturas de armazenamento de águas pluviais e (2) avaliar os potenciais efeitos da recarga artificial na qualidade da água dessas captações. Um modelo geoquímico de mistura revelou que a proporção de recarga artificial nas captações variava entre 0 e 75%. Informações obtidas a partir dos traçadores, do nível freático e dos dados geológicos, forneceram indícios sobre a complexidade do fluxo de água subterrânea, e foram usadas para explicar a distribuição espacial da recarga artificial. Adicionalmente, constatou-se um incremento da qualidade da água subterrânea das captações influenciadas pela recarga artificial. Uma análise estatística para a condutividade eléctrica e para o SO 4 demonstrou uma diferença significativa entre a qualidade da água naquelas captações e nas captações que não sofreram recarga artificial. Os resultados deste estudo fornecem evidências quantitativas de que as estruturas de armazenamento de água pluvial no sul do Rajastão influenciam o abastecimento e a qualidade das águas subterrâneas de captações, através da recarga artificial das águas subterrâneas locais.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6
Fig 7
Fig 8

Similar content being viewed by others

References

  • Ayoob S, Gupta AK (2006) Fluoride in drinking water: a review on the status and stress effects. Crit Rev Environ Sci Technol 36(6):433–487

    Article  Google Scholar 

  • CGWB (Central Ground Water Board) (2003) Rainwater harvesting techniques to augment ground water. CGWB, Ministry of Water Resources, Faridabad, India, 29 pp

  • Chauhan NK, Sharma BL, Mohemmad SA (1996) Structural geometry and strain history of the early Proterozoic Aravalli rocks of Gorimari, Udaipur district, Rajasthan. J Geol Soc India 47:59–74

    Google Scholar 

  • Douglas M, Clark ID, Raven K, Bottomley D (1999) Modeling surface-to-depth flow and mixing with isotopes at the Con Mine, Yellowknife, Canada: an analogue for the hydrogeology of radioactive waste repositories. In: Isotope techniques in water resources development and management, session 5: isotope data interpretation and evaluation methodologies, IAEA Symposium, Vienna, May 1999, 17 pp

  • Eby GN (2004) Principles of environmental geochemistry. Brooks/Cole, Florence, KY, USA, 514 pp

    Google Scholar 

  • ECIDWR (Expert Committee on Integrated Development of Water Resources) (2005) Expert committee on integrated development of water resources report: 2005. ECIDWR, Jaipur, 43 pp

  • Genereux D (2004) Comparison of naturally-occurring chloride and oxygen-18 as tracers of interbasin groundwater transfer in lowland rainforest, Costa Rica. J Hydrol 295:17–27

    Article  Google Scholar 

  • GOR (Government of Rajasthan) (2005) Rajasthan State water policy. GOR, Jaipur, India, 14 pp

    Google Scholar 

  • GOR (Government of Rajasthan) (2002) Government of Rajasthan statistical abstract: 2002. GOR, Jaipur, India

    Google Scholar 

  • Gundogdu KS, Guney I (2007) Spatial analyses of groundwater levels using universal Kriging. J Earth Syst Sci 116(1):49–55

    Article  Google Scholar 

  • Gunnell Y, Anupama K, Sultan B (2007) Response of the South Indian runoff-harvesting civilization to northeast monsoon rainfall variability during the last 2000 years: instrumental records and indirect evidence. Holocene 17(2):207–215

    Article  Google Scholar 

  • IAEA (International Atomic Energy Agency) (2001) GNIP maps and animations. IAEA, Vienna. http://isohis.iaea.org. Cited 15 November 2006

  • ICID (International Commission on Irrigation and Drainage) (2005) Water resources assessment of Sabarmati Basin, India. ICID, New Delhi, India, 65 pp

  • Joshi NK (2002) Impact assessment of small water harvesting structures in the Ruparel River Basin. Institute of Development Studies, Jaipur, India, 32 pp

    Google Scholar 

  • Kendall C, Caldwell EA (1998) Fundamentals of isotope geochemistry,. In: Kendall C, McDonnell JJ (eds) Isotope tracers in catchment hydrology. Elsevier, New York, pp 51–86

  • Kumar MD, Chopde S, Mudrakartha S, Prakash A (1999) Addressing water scarcity: local strategies for water supply and conservation management in the Sabarmati Basin, Gujarat. In: Moench M, Caspari E, Dixit A (eds) Rethinking the mosaic: investigations into local water management. Nepal Water Conservation Foundation, Kathmandu, Nepal, pp 191–246

    Google Scholar 

  • Kumar R, Singh RD, Sharma KD (2005) Water resources of India. Curr Sci 89(5):794–811

    Google Scholar 

  • Mahnot SC, Singh PK (2003) Agro-climatic conditions and surface water harvesting. In: Kaul V (ed) Water harvesting and management. SDC/ICU, Jaipur, India, pp 26–34

  • MNIT/UNICEF (2003) Guidelines for planning, design, construction and maintenance of anicuts and check dams. Malaviya National Institute of Technology (MNIT)/UNICEF, Jaipur, India, 14 pp

  • Moench M, Dixit A, Janakarajan S, Rathore MS, Mudrakartha S (2003) The fluid mosaic: water governance in the context of variability, uncertainty and change. Nepal Water Conservation Foundation, Kathmandu, Nepal and the Institute for Social and Environmental Transition, Boulder, USA, 66 pp

  • Mukherjee A, Sengupta MK, Hossain MA, Ahamed S, Das B, Nayak B, Lodh D, Rahman MM, Chakraborti D (2006) Arsenic contamination in groundwater: a global perspective with emphasis on the Asian scenario. J Health Popul Nutri 24(2):142–163

    Google Scholar 

  • Mukherjee A, Fryar AE, Rowe HD (2007) Regional-scale stable isotope signatures of recharge and deep groundwater in the arsenic affected areas of West Bengal, India. J Hydrol 334:151–161

    Article  Google Scholar 

  • Ojiambo BS, Poreda RJ, Lyons WB (2001) Ground water/surface water interactions in Lake Naivasha, Kenya, using delta O-18, delta D, and H-3/He-3 age-dating. Ground Water 39(4):526–533

    Article  Google Scholar 

  • Pandian K, Sankar K (2007) Hydrogeology and groundwater quality in the Vaippar River Basin, Tamil Nadu. J Geol Soc India 69:970–982

    Google Scholar 

  • Patel J, (1997) Story of a Rivulet Arvari: from death to rebirth. Tarun Bharat Sangh (TBS), Jaipur, India, 47 pp

  • Price RM, Swart PK (2006) Geochemical indicators of groundwater recharge in the surficial aquifer system, Everglades National Park, Florida, USA. In: Harmon RS, Wicks D (eds) Perspectives on karst geomorphology, hydrology, and geochemistry: a tribute volume to Derek C. Ford and William B. White. Geol Soc Am Spec Pap 404, pp 251–266

  • Rao MJ, Durgaiah B, Saradhi BV, Jaisankar G, Rao DP, Ganeshi KM (2007) Spatial variability of groundwater chemical quality in part of Nalgonda district, Andhra Pradesh. J Geol Soc India 69:983–988

    Google Scholar 

  • Rathore MS (2005) Groundwater exploration and augmentation efforts in Rajasthan. Institute of Development Studies, Jaipur, India, 33 pp

    Google Scholar 

  • Samantaray R (1998) Johad: watershed in Alwar district Rajasthan. United Nations Inter Agency Working Group on Water and Environmental Sanitation (UN-IAWG-WES), New Delhi, India, 24 pp

  • Sharma A (2002) Does water harvesting help in water-scarce regions: a case study of two villages in Alwar, Rajasthan. IWMI-Tata Water Policy Research Program, Gujarat, India, 24 pp

    Google Scholar 

  • Sharda VN, Kurothe RS, Sena DR, Pande VC, Tiwari SP (2006) Estimation of groundwater recharge from water storage structures in a semi-arid climate of India. J Hydrol 329:224–243

    Google Scholar 

  • Sharma DC, Roy KK (2003) Ground water. In: Kaul V (ed) Water harvesting and management. SDC/ICU, Jaipur, India, pp, 35–47

  • Stiefel JM (2007) The effectiveness of rainwater harvesting for the artificial recharge of groundwater in the Wakal River Basin, India. MSc Thesis, Florida International University, USA, 150 pp

  • Sukhija BS, Reddy DV, Nandakumar MV, Rama (1997) A method for evaluation of artificial recharge through percolation tanks using environmental chloride. Groundwater 35(1):161–165

    Google Scholar 

  • Sukhija BS, Reddy DV, Nagabhushanam P, Hussain S (2003) Recharge processes: piston flow vs preferential flow in semi-arid aquifers of India. Hydrogeol J 11(3):387–395

    Google Scholar 

  • Sukhija BS, Reddy DV, Nagabhushanam P, Nandakumar MV (2005) Efficacy of percolation ponds as artificial recharge structures and the controlling factors. J Geol Soc India 66:95–104

    Google Scholar 

  • Sukhija BS, Reddy DV, Nagabhushanam P, Bhattacharya SK, Jani RA, Kumar D (2006) Characterisation of recharge processes and groundwater flow mechanisms in weathered-fractured granites of Hyderabad (India) using isotopes. Hydrogeol J 14(5):663–674

    Article  Google Scholar 

  • Swart PK (2000) The oxygen isotopic composition of interstitial waters: evidence for fluid and recrystallization in the margins of the Great Bahama Bank. Proc ODP Sci Results 166:91–98

    Google Scholar 

  • Umar R, Ahmed I (2007) Hydrochemical characteristics of groundwater in parts of Krishni-Yamuna Basin, Muzaffarnagar district, UP. J Geol Soc India 69:989–995

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Global Water for Sustainability (GLOWS) Program, funded through a grant from the United States Agency for International Development (USAID). This project was carried out in collaboration with World Vision India. The authors wish to thank colleagues within World Vision India for their generous support of the field work: A. Purkayastha, P. Das, A. Stevenson, L. Baria, and the rest of the World Vision Navprabhat ADP staff. Furthermore, it is necessary to acknowledge Dr. P.K. Singh, Dr. A. Bordia, and Dr. M.S. Rathore for their insights and assistance. The authors wish to further thank colleagues at Florida International University that have contributed to this project: H. Biswas, H. Singler, P. Sullivan, and D. Gann. This paper is contribution number 421 of the Southeast Environmental Research Center at Florida International University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Stiefel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stiefel, J.M., Melesse, A.M., McClain, M.E. et al. Effects of rainwater-harvesting-induced artificial recharge on the groundwater of wells in Rajasthan, India. Hydrogeol J 17, 2061–2073 (2009). https://doi.org/10.1007/s10040-009-0491-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-009-0491-6

Keywords

Navigation