Skip to main content
Log in

Dryland salinity processes within the discharge zone of a local groundwater system, southeastern Australia

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Detailed study of a localised saline discharge zone in southeastern Australia shows that the salinisation is mostly due to the shallow water table (<1–2 m from the surface). Direct evaporation, particularly in summer, leads to extremely high soil–water salinities at the surface, even though the underlying groundwater is moderately fresh. Groundwater discharge is localised at a break of slope, where the water table intersects the surface, and where the transition from permeable sands to clay-rich sediments inhibits lateral groundwater flow. Higher salt concentrations build up in the clays because of the long residence times during which soil-waters are exposed to evapotranspiration and the reduced potential for salts to be flushed from the sediments. As a result the saline discharge area does not correspond to the part of the site with the largest salt store. Results of the study demonstrate that for dryland salinisation to occur, the groundwater beneath the discharge zone need not be saline, and the presence of a large salt store does not necessarily lead to problems of dryland salinisation if, as in the clay-rich sediments at the site, the salt lies below the pasture root zone. Furthermore, mobilisation of salt stores within low permeability sediments by rising groundwater may be minor.

Résumé

L’étude détaillée d’une zone localisée d’émergence salée au sud-est de l’Australie montre que la salinisation est surtout due à la nappe phréatique (<1–2 m sous la surface). L’évaporation directe, particulièrement durant l’été, conduit à des salinités de l’eau du sol extrêmement élevées à la surface, même si l’eau souterraine sous-jacente est modérément douce. L’émergence de l’eau souterraine est localisée à la rupture de pente, là où la nappe phréatique rencontre la surface du sol et où la transition entre sables perméables et sédiments riches en argiles inhibe les écoulements d’eau souterraine latéraux. Les plus fortes concentrations en sel s’accumulent dans les argiles du fait de temps de résidence élevés, durant lesquels les eaux du sol sont exposées à l’évapotranspiration et à un lessivage réduit des sédiments. Il en résulte que l’aire d’émergence des eaux salées ne correspond pas à la partie du site rencontrant la réserve de sel la plus importante. Les résultats de l’étude démontrent que pour que la salinisation d’une zone aride devienne effective, l’eau souterraine sous la zone ne doit pas être forcément salée, et la présence d’une zone étendue de réserve de sel ne conduit pas forcément à des problèmes de salinisation de zones arides si, comme dans les sédiments argileux du site, le sel ne repose pas sous la zone de pâture. De plus, la mobilisation des réserves de sel dans les sédiments peu perméables par la montée du niveau de l’eau souterraine devrait être mineure.

Resumen

El estudio detallado de una zona local de descarga salina en el sudeste de Australia, muestra que la salinización es principalmente debido a un nivel freático poco profundo (<1–2 m de la superficie). La evaporación Directa, particularmente en verano, conlleva a salinidades de suelo-agua sumamente altas en la superficie, aunque el agua subterránea subyacente es moderadamente dulce. La descarga de Agua subterránea se localiza en una interrupción de la ladera, dónde el nivel freático intercepta la superficie, y donde la transición de las arenas permeables a los sedimentos ricos en arcilla inhibe el flujo lateral del agua subterránea. Las concentraciones de sal más altas se forman en las arcillas debido a los tiempos de residencia largos durante los cuales se exponen el conjunto suelo-agua a la evapotranspiración y también por el potencial reducido para las sales de ser expulsadas de los sedimentos. Como resultado el área de la descarga salina no corresponde a la parte del sitio con el contenido de sal más grande. Los resultados del estudio demuestran que para que ocurra la salinización en terrenos secos, el agua subterránea bajo la de zona de descarga no necesita ser salina, y que la presencia de un almacenamiento de sal grande, no necesariamente lleva a los problemas de salinización en terrenos secos si, como en los sedimentos ricos en arcilla del sitio, la sal yace debajo de la zona de raíz de la pastura. Además, la movilidad de depósitos de sal dentro de los sedimentos de permeabilidad baja pueden ser menores, por causa del agua subterránea ascendente.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acworth RI, Broughton A, Nicoll C, Jankowski J (1997) The role of debris-flow deposits in the development of dryland salinity in the Yass River catchment, New South Wales, Australia. Hydrogeol J 5(1):22–36

    Article  Google Scholar 

  • Allison GB, Forth JR (1982) Estimation of historical groundwater recharge rate. Aust J Soil Res 20(3):255–259

    Article  Google Scholar 

  • Arad A, Evans R (1987) The hydrogeology, hydrochemistry and environmental isotopes of the Campaspe River aquifer system, north-central Victoria, Australia. J Hydrol 95(1–2):63–86

    Article  Google Scholar 

  • Ayers RS, Westcot DW (1976) Water quality for agriculture. Irrigation and drainage paper 29. Food and Agriculture Organisation of the United Nations, Rome

  • Bennetts DA, Webb JA (2004) Processes affecting groundwater quality in a basalt aquifer system in southern Australia. In: Wanty RB, Seal RR (Eds) Proceedings: International Symposium on Water–Rock Interaction 11. Balkema, Rotterdam, pp 347–351

    Google Scholar 

  • Bennetts DA, Webb JA, Gray CM (2003) Distribution of Plio-Pleistocene basalts and regolith around Hamilton, western Victoria, and their relationship to groundwater recharge and discharge. In: Roach IC (Ed) Advances in regolith. CRC LEME, pp 11–15

  • Bennetts DA, Webb JA, Stone DJM, Hill DM (2006) Insights into dryland groundwater salinisation, south-eastern Australia, using chemical and isotopic evidence. J Hydrol 323:178–192

    Article  Google Scholar 

  • Bird PR (1986) Trees in western Victoria: an historical perspective. Trees Nat Resour 28:8–11

    Google Scholar 

  • Blackburn G, Mcleod S (1983) Salinity of atmospheric precipitation in the Murray-Darling drainage division, Australia. Aust J Soil Res 21:411–434

    Article  Google Scholar 

  • Bormann M (2004) Temporal And Spatial Trends In Rainwater Chemistry Across Central And Western Victoria. Honours Thesis, La Trobe University, Australia

  • Bowler JM (1971) Pleistocene salinities and climatic change: evidence from lakes and lunettes in southeastern Australia. In: Mulvaney DS, Colson J (Eds) Man and environment in Australia. Australian National University Press, Canberra, pp 47–65

    Google Scholar 

  • Brouwer J, Fitzpatrick RW (2002) Interpretation of morphological features in a salt-affected duplex soil toposequence with an altered soil water regime in western Victoria. Aust J Soil Res 40(6):903–926

    Article  Google Scholar 

  • Cartwright I, Weaver T (2004) Hydrogeochemistry of the Goulburn Valley region of the Murray Basin, Australia: implications for flow paths and resource vulnerability. Hydrogeol J 13:752–770

    Article  Google Scholar 

  • Clemmens AJ, Bos MG, Replogle JA (1984) Portable RBC flumes for furrows and earthen channels. Trans Am Soc Agri Eng 27:1016–1022

    Google Scholar 

  • Cook PG, Jolly ID, Leaney FW, Walker GR, Allan GL, Fifield LK, Allison GB (1994) Unsaturated zone tritium and chlorine 36 profiles from southern Australia: their use as tracers of soil water movement. Water Resour Res 30(6):1709–1719

    Article  Google Scholar 

  • Coram JE, Dyson PR, Houlder PA, Evans WR (2000) Australian groundwater flow systems contributing to dryland salinity, Bureau of Rural Science Report for the National Land and Water Resources Audit, Canberra, Australia

  • Dahlhaus PD, MacEwan RJ, Nathan EL, Morand VJ (2000) Salinity on the southeastern Dundas Tableland, Victoria. Aust J Earth Sci 47:3–11

    Article  Google Scholar 

  • Department of the Environment and Heritage and Department of Agriculture, Fisheries and Forestry (2005) Salinity Methods in the Australian Context. January 2005, DEH and DAFF, Canberra, Australia

  • Dyson PR (1983) Dryland salting and groundwater discharge in the Victorian uplands. Proc R Soc Vic 95(3):113–116

    Google Scholar 

  • Elmore L (2002) Trees and the basalt plains: the growth and distribution of trees on the basalt plains of Victoria. Basalt Books, Wonga Park, Victoria

    Google Scholar 

  • Jenkin JJ, Dyson PR (1983) Groundwater and soil salinisation near Bendigo, Victoria. In: Knight MJ, Minty EJ, Smith RB (Eds) Collected case studies in engineering geology, hydrogeology and environmental geology. Geological Society of Australia, Sydney, Australia

    Google Scholar 

  • Jolly ID, Cook PG, Allison GB, Hughes MW (1989) Simultaneous water and solute movement through an unsaturated soil following an increase in recharge. J Hydrol 111:391–396

    Article  Google Scholar 

  • Leaney FW, Herczeg AL, Walker GR (2003) Salinization of a fresh palaeo-ground water resource by enhanced recharge. Ground Water 41(1):84–92

    Article  Google Scholar 

  • Macumber PG (1991) Interaction between groundwater and surface systems in northern Victoria. Department of Conservation and Environment, Victoria, Australia

    Google Scholar 

  • Malcolm CV (1982) Wheatbelt salinity: a review of the saltland problem in south western Australia. Western Australia Depart Agri Tech Bull 52

  • Mann BS, Stanley DR, Bolger PF (1992) Basalt plains hydrogeological salinity investigation. Progress Report no. 2, Hamilton-Dunkeld Sub-Region. 1992/1, Rural Water Commission Technical Note, Rural Water Commission, Victoria, Australia

  • Marshall JK, Morgan AL, Akilan K, Farrell RCC, Bell DT (1997) Water uptake by two river red gum (Eucalyptus camaldulensis) clones in a discharge site plantation in the Western Australian wheatbelt. J Hydrol 200:136–148

    Article  Google Scholar 

  • McCaskill M, Bennetts DA (2004) First-year production of salt-tolerant pasture in response to salinity and wetness, Salinity Solutions: working with science and society, Proceedings of the Salinity Solutions Conference, Bendigo, Victoria, August 2004

  • Mitchell TL (1839) Three expeditions into the interior of Eastern Australia: with description of the recently explored region of Australia Felix, and of the present colony of New South Wales. Boone, London

  • Munro M (2000) Salinity discharge in the Glenelg Hopkins CMA Region. Department of Natural Resources and Environment, Melbourne

    Google Scholar 

  • Nathan RJ (1999) Dryland salinity on the Dundas Tableland: a historical appraisal. Aust Geogr 30(3):295–310

    Article  Google Scholar 

  • National Land and Water Resources Audit (2001) Australian Dryland Salinity Assessment 2000: Extent, Impacts, Processes, Monitoring and Management Options, Land and Water Australia, Department of Primary Industries, Canberra

  • Paine MD, Bennetts DA, Webb JA, Morand VJ (2004) Nature and extent of Pliocene strandlines in southwestern Victoria and their application to late Neogene tectonics. Aust J Earth Sci 51(3):407–422

    Article  Google Scholar 

  • Peck AJ (1978) Salinisation of non-irrigated soils and associated streams: a review. Aust J Soil Res 16:648–657

    Google Scholar 

  • Peck AJ, Hatton T (2003) Salinity and the discharge of salts from catchments in Australia. J Hydrol 272(1–4):191–202

    Article  Google Scholar 

  • Peck AJ, Williamson DR (1987) Effects of forest clearing on groundwater. J Hydrol 94(1–2):47–65

    Article  Google Scholar 

  • Penman H (1948) Natural evaporation from open water, bare soil and grass. Proc Royal Soc 193:120–146

    Google Scholar 

  • Price RC, Nicholls IA, Gray CM (2003) Cainozoic igneous activity. In: Birch WD (ed) Geology of Victoria. Geological Society of Australia Special Publication 23, pp 361–375

  • Rayment GE, Higginson FR (1992) Australian laboratory handbook of soil and water chemical methods. Inkata Press, Melbourne, Australia

    Google Scholar 

  • Salama RB (1994) Management of saline groundwater discharge by long-term windmill pumping in the wheatbelt, Western Australia. Appl Hydrogeol 1:19–33

    Article  Google Scholar 

  • Salama RB, Farrington P, Bartle GA, Watson GD (1993) The role of geological structures and relict channels in the development of dryland salinity in the wheatbelt of Western Australia. Aust J Earth Sci 40:45–56

    Article  Google Scholar 

  • Salama RB, Bartle G, Farrington P, Wilson V (1994) Basin geomorphological controls on the mechanism of recharge and discharge and its effect on salt storage and mobilization: comparative study using geophysical surveys. J Hydrol 155(1–2):1–26

    Article  Google Scholar 

  • Schofield S, Jankowski J (2003) The hydrogeology of the Ballimore region, central New South Wales, Australia: an integrated study. Environ Geol 44(1):90–100

    Google Scholar 

  • Smith M (1992) Report on the expert consultation on revision of the FAO methodologies for crop water requirements, Food and Agriculture Organisation, Rome

  • Walker GR, Jolly ID, Cook PG (1991) A new chloride leaching approach to the estimation of diffuse recharge following a change in land use. J Hydrol 128:49–67

    Article  Google Scholar 

  • White RE, Christy BP, Ridley AM, Okom AE, Murphy SR, Johnston WH, Michalk DL, Sanford P, McCaskill MR, Johnson IR, Garden DL, Hall DJM, Andrew MH (2003) SGS Water Theme: influence of soil, pasture type and management on water use in grazing across the high rainfall zone of southern Australia. Aust J Exp Agric 43:907–926

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Glenelg Hopkins Catchment Management Authority for funding the senior author, and Australian Wool Innovations, Land and Water Australia, the Cooperative Research Centre for Plant-based Management of Dryland Salinity and the Victorian Department of Primary Industries for funding the Sustainable Grazing on Saline Lands project. We also thank P. and L. Hayes for use of their land for the study, CSBP Limited for undertaking soil analysis and M. Imhof and Austin Brown of the Department of Primary Industries, Werribee, for describing soil pits at the site. Two anonymous referees provided helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darren A. Bennetts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennetts, D.A., A. Webb, J., McCaskill, M. et al. Dryland salinity processes within the discharge zone of a local groundwater system, southeastern Australia. Hydrogeol J 15, 1197–1210 (2007). https://doi.org/10.1007/s10040-007-0212-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-007-0212-y

Keywords

Navigation