Skip to main content
Log in

Modes of wall induced granular crystallisation in vibrational packing

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Granular crystallisation is an important phenomenon whereby ordered packing structures form in granular matter under vibration. However, compared with the well-developed principles of crystallisation at the atomic scale, crystallisation in granular matter remains relatively poorly understood. To investigate this behaviour further and bridge the fields of granular matter and materials science, we simulated mono-dispersed spheres confined in cylindrical containers to study their structural dynamics during vibration. By applying adequate vibration, disorder-to-order transitions were induced. Such transitions were characterised at the particle scale through bond orientation order parameters. As a result, emergent crystallisation was indicated by the enhancement of the local order of individual particles and the number of ordered particles. The observed heterogeneous crystallisation was characterised by the evolution of the spatial distributions via coarse-graining the order index. Crystalline regimes epitaxially grew from templates formed near the container walls during vibration, here termed the wall effect. By varying the geometrical dimensions of cylindrical containers, the obtained crystallised structures were found to differ at the cylindrical wall zone and the planar bottom wall zone. The formed packing structures were quantitatively compared to X-ray tomography results using again these order parameters. The findings here provide a microscopic perspective for developing laws governing structural dynamics in granular matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Jaeger, H.M., Nagel, S.R.: Physics of the granular state. Science 255(5051), 1523 (1992)

    Article  ADS  Google Scholar 

  2. de Gennes, P.G.: Granular matter: a tentative view. Rev. Mod. Phys. 71(2), S374–S382 (1999)

    Article  Google Scholar 

  3. Wang, M., Pan, N.: Predictions of effective physical properties of complex multiphase materials. Mater. Sci. Eng. R Rep. 63(1), 1–30 (2008)

    Article  Google Scholar 

  4. Pouliquen, O., Nicolas, M., Weidman, P.D.: Crystallization of non-Brownian spheres under horizontal shaking. Phys. Rev. Lett. 79(19), 3640–3643 (1997)

    Article  ADS  Google Scholar 

  5. Carvente, O., Ruiz-Suárez, J.C.: Crystallization of confined non-Brownian spheres by vibrational annealing. Phys. Rev. Lett. 95(1), 018001 (2005)

    Article  ADS  Google Scholar 

  6. An, X., Yang, R., Dong, K., Yu, A.: DEM study of crystallization of monosized spheres under mechanical vibrations. Comput. Phys. Commun. 182(9), 1989–1994 (2011)

    Article  ADS  Google Scholar 

  7. Saadatfar, M., Takeuchi, H., Robins, V., Francois, N., Hiraoka, Y.: Pore configuration landscape of granular crystallization. Nat. Commun. 8, 15082 (2017)

    Article  ADS  Google Scholar 

  8. Shinde, D.P., Mehta, A., Barker, G.C.: Shaking-induced crystallization of dense sphere packings. Phys. Rev. E 89(2), 022204 (2014)

    Article  ADS  Google Scholar 

  9. Dong, K., Wang, C., Yu, A.: A novel method based on orientation discretization for discrete element modeling of non-spherical particles. Chem. Eng. Sci. 126, 500–516 (2015)

    Article  Google Scholar 

  10. Tai, S.-C., Hsiau, S.-S.: The flow regime during the crystallization state and convection state on a vibrating granular bed. Adv. Powder Technol. 20(4), 335–349 (2009)

    Article  Google Scholar 

  11. Mehta, A., Barker, G.C.: Vibrated powders: a microscopic approach. Phys. Rev. Lett. 67(3), 394–397 (1991)

    Article  ADS  Google Scholar 

  12. Ratnaswamy, V., Rosato, A.D., Blackmore, D., Tricoche, X., Ching, N., Zuo, L.: Evolution of solids fraction surfaces in tapping: simulation and dynamical systems analysis. Granul. Matter 14(2), 163–168 (2012). https://doi.org/10.1007/s10035-012-0343-2

    Article  Google Scholar 

  13. Barker, G.C., Mehta, A.: Transient phenomena, self-diffusion, and orientational effects in vibrated powders. Phys. Rev. E 47(1), 184–188 (1993)

    Article  ADS  Google Scholar 

  14. Zhao, J., Jiang, M., Soga, K., Luding, S.: Micro origins for macro behavior in granular media. Granul. Matter 18(3), 1–5 (2016). https://doi.org/10.1007/s10035-016-0662-9

    Article  ADS  Google Scholar 

  15. Richard, P., Nicodemi, M., Delannay, R., Ribiere, P., Bideau, D.: Slow relaxation and compaction of granular systems. Nat. Mater. 4(2), 121–128 (2005)

    Article  ADS  Google Scholar 

  16. Yu, A.B., An, X.Z., Zou, R.P., Yang, R.Y., Kendall, K.: Self-assembly of particles for densest packing by mechanical vibration. Phys. Rev. Lett. 97(26), 265501 (2006)

    Article  ADS  Google Scholar 

  17. Rosato, A.D., Dybenko, O., Horntrop, D.J., Ratnaswamy, V., Kondic, L.: Microstructure evolution in density relaxation by tapping. Phys. Rev. E 81(6), 061301 (2010)

    Article  ADS  Google Scholar 

  18. Philippe, P., Bideau, D.: Granular medium under vertical tapping: change of compaction and convection dynamics around the liftoff threshold. Phys. Rev. Lett. 91(10), 104302 (2003)

    Article  ADS  Google Scholar 

  19. Lan, Y., Rosato, A.D.: Convection related phenomena in granular dynamics simulations of vibrated beds. Phys. Fluids 9(12), 3615–3624 (1997). https://doi.org/10.1063/1.869499

    Article  ADS  Google Scholar 

  20. Carvente, O., Ruiz-Suárez, J.C.: Self-assembling of dry and cohesive non-Brownian spheres. Phys. Rev. E 78(1), 011302 (2008)

    Article  ADS  Google Scholar 

  21. Nahmad-Molinari, Y., Ruiz-Suárez, J.C.: Epitaxial growth of granular single crystals. Phys. Rev. Lett. 89(26), 264302 (2002)

    Article  ADS  Google Scholar 

  22. Panaitescu, A., Kudrolli, A.: Epitaxial growth of ordered and disordered granular sphere packings. Phys. Rev. E 90(3), 032203 (2014)

    Article  ADS  Google Scholar 

  23. An, X.Z., Yang, R.Y., Dong, K.J., Zou, R.P., Yu, A.B.: Micromechanical simulation and analysis of one-dimensional vibratory sphere packing. Phys. Rev. Lett. 95(20), 205502 (2005)

    Article  ADS  Google Scholar 

  24. Boutreux, T., de Geennes, P.G.: Compaction of granular mixtures: a free volume model. Phys. A 244(1), 59–67 (1997)

    Article  Google Scholar 

  25. Saadatfar, M., Kabla, A., Senden, T., Aste, T.: The geometry and the number of contacts of monodisperse sphere packs using X-ray tomography. In: Powders and Grains 2005-Proceedings of the 5th International Conference on Micromechanics of Granular Media 2005, pp. 33–36

  26. Hanifpour, M., Francois, N., Robins, V., Kingston, A., Vaez Allaei, S.M., Saadatfar, M.: Structural and mechanical features of the order-disorder transition in experimental hard-sphere packings. Phys. Rev. E 91(6), 062202 (2015)

    Article  ADS  Google Scholar 

  27. Reimann, J., Brun, E., Ferrero, C., Vicente, J.: Pebble bed structures in the vicinity of concave and convex walls. Fusion Eng. Des. 98–99, 1855–1858 (2015)

    Article  Google Scholar 

  28. Francois, N., Saadatfar, M., Cruikshank, R., Sheppard, A.: Geometrical frustration in amorphous and partially crystallized packings of spheres. Phys. Rev. Lett. 111(14), 148001 (2013)

    Article  ADS  Google Scholar 

  29. Lumay, G., Vandewalle, N.: Experimental study of granular compaction dynamics at different scales: grain mobility, hexagonal domains, and packing fraction. Phys. Rev. Lett. 95(2), 028002 (2005)

    Article  ADS  Google Scholar 

  30. Komatsu, Y., Tanaka, H.: Roles of energy dissipation in a liquid–solid transition of out-of-equilibrium systems. Phys. Rev. X 5(3), 031025 (2015)

    Google Scholar 

  31. Reimann, J., Vicente, J., Brun, E., Ferrero, C., Gan, Y., Rack, A.: X-ray tomography investigations of mono-sized sphere packing structures in cylindrical containers. Powder Technol. 318(Supplement C), 471–483 (2017)

    Article  Google Scholar 

  32. Russo, J., Tanaka, H.: The microscopic pathway to crystallization in supercooled liquids. Sci. Rep. 2, 505 (2012)

    Article  ADS  Google Scholar 

  33. Goodrich, C.P., Liu, A.J., Nagel, S.R.: Solids between the mechanical extremes of order and disorder. Nat. Phys. 10(8), 578–581 (2014)

    Article  Google Scholar 

  34. Kloss, C., Goniva, C., Hager, A., Amberger, S., Pirker, S.: Models, algorithms and validation for opensource DEM and CFD-DEM. Prog. Comput. Fluid Dyn. 12(2–3), 140–152 (2012)

    Article  MathSciNet  Google Scholar 

  35. An, X.Z., Yang, R.Y., Zou, R.P., Yu, A.B.: Effect of vibration condition and inter-particle frictions on the packing of uniform spheres. Powder Technol. 188(2), 102–109 (2008)

    Article  Google Scholar 

  36. Steinhardt, P.J., Nelson, D.R., Ronchetti, M.: Bond-orientational order in liquids and glasses. Phys. Rev. B 28(2), 784–805 (1983)

    Article  ADS  Google Scholar 

  37. Kansal, A.R., Torquato, S., Stillinger, F.H.: Diversity of order and densities in jammed hard-particle packings. Phys. Rev. E 66(4), 041109 (2002)

    Article  ADS  Google Scholar 

  38. ten Wolde, P.-R., Ruiz-Montero, M.J., Frenkel, D.: Simulation of homogeneous crystal nucleation close to coexistence. Faraday Discuss. 104, 93–110 (1996)

    Article  ADS  Google Scholar 

  39. Goldhirsch, I.: Stress, stress asymmetry and couple stress: from discrete particles to continuous fields. Granul. Matter 12(3), 239–252 (2010)

    Article  Google Scholar 

  40. Weinhart, T., Thornton, A.R., Luding, S., Bokhove, O.: From discrete particles to continuum fields near a boundary. Granul. Matter 14(2), 289–294 (2012)

    Article  Google Scholar 

  41. Goldhirsch, I.: Introduction to granular temperature. Powder Technol. 182(2), 130–136 (2008)

    Article  Google Scholar 

  42. Hsiau, S.S., Lu, L.S., Tai, C.H.: Experimental investigations of granular temperature in vertical vibrated beds. Powder Technol. 182(2), 202–210 (2008)

    Article  Google Scholar 

  43. Rietz, F., Radin, C., Swinney, H.L., Schröter, M.: Nucleation in sheared granular matter. Phys. Rev. Lett. 120(5), 055701 (2018). https://doi.org/10.1103/PhysRevLett.120.055701

    Article  ADS  Google Scholar 

  44. Aste, T., Saadatfar, M., Senden, T.J.: Geometrical structure of disordered sphere packings. Phys. Rev. E 71(6), 061302 (2005)

    Article  ADS  Google Scholar 

  45. Tanaka, H.: Bond orientational order in liquids: towards a unified description of water-like anomalies, liquid-liquid transition, glass transition, and crystallization. Eur. Phys. J. E 35(10), 113 (2012)

    Article  Google Scholar 

  46. Berryman, J.T., Anwar, M., Dorosz, S., Schilling, T.: The early crystal nucleation process in hard spheres shows synchronised ordering and densification. J. Chem. Phys. 145(21), 211901 (2016)

    Article  ADS  Google Scholar 

  47. Rycroft, C.H., Grest, G.S., Landry, J.W., Bazant, M.Z.: Analysis of granular flow in a pebble-bed nuclear reactor. Phys. Rev. E 74(2), 021306 (2006)

    Article  ADS  Google Scholar 

  48. Nowak, E.R., Knight, J.B., Ben-Naim, E., Jaeger, H.M., Nagel, S.R.: Density fluctuations in vibrated granular materials. Phys. Rev. E 57(2), 1971–1982 (1998)

    Article  ADS  Google Scholar 

  49. Panaitescu, A., Reddy, K.A., Kudrolli, A.: Nucleation and crystal growth in sheared granular sphere packings. Phys. Rev. Lett. 108(10), 108001 (2012)

    Article  ADS  Google Scholar 

  50. Heitkam, S., Drenckhan, W., Fröhlich, J.: Packing spheres tightly: influence of mechanical stability on close-packed sphere structures. Phys. Rev. Lett. 108(14), 148302 (2012)

    Article  ADS  Google Scholar 

  51. Fujine, M., Sato, M., Katsuno, H., Suzuki, Y.: Effect of container shape and walls on solidification of Brownian particles in a narrow system. Phys. Rev. E 89(4), 042401 (2014)

    Article  ADS  Google Scholar 

  52. Arai, S., Tanaka, H.: Surface-assisted single-crystal formation of charged colloids. Nat. Phys. 13(5), 503–509 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixiang Gan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Claudio Ferrero: Deceded on May 25, 2018

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, W., Reimann, J., Hanaor, D. et al. Modes of wall induced granular crystallisation in vibrational packing. Granular Matter 21, 26 (2019). https://doi.org/10.1007/s10035-019-0876-8

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-019-0876-8

Keywords

Navigation