Skip to main content
Log in

Dense inclined flows of inelastic spheres: tests of an extension of kinetic theory

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Using the results of recent numerical simulations, we extend an existing kinetic theory for dense flows of identical, nearly elastic, frictionless spheres to identical, very dissipative, frictional spheres. The existing theory incorporates an additional length scale in the expression for the collisional rate of dissipation; this length scale is identified with the size of a cluster of correlated particles. Parameters of the theory for very dissipative, frictional spheres are set using the results of physical experiments on inclined flows of spheres over a rigid, bumpy base in the absence of sidewalls. The resulting theory is then tested against the results of physical experiments on flows of the same material over the surface of an erodible heap when frictional sidewalls are present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mitarai N., Nakanishi H.: Velocity correlations in dense granular shear flows: effects on energy dissipation and normal stress. Phys. Rev. E 75, 031305 (2007)

    Article  ADS  Google Scholar 

  2. Reddy K.A., Kumaran V.: Applicability of constitutive relations from kinetic theory for dense granular flow. Phys. Rev. E 76, 061305 (2007)

    Article  ADS  Google Scholar 

  3. Lois G., Carlson J., Lemaitre A.: Numerical tests of constitutive laws for dense granular fows. Phys. Rev. E 72, 051303 (2005)

    Article  ADS  Google Scholar 

  4. Lois G., Lemaitre A., Carlson J.: Emergence of multi-contact interactions in contact dynamics simulations. Europhys. Lett. 76, 318 (2006)

    Article  ADS  Google Scholar 

  5. Mills P., Rognon P.G., Chevoir F.: Rheology and structure of granular materials near the jamming transition. Europhys. Lett. 81, 64005 (2008)

    Article  ADS  Google Scholar 

  6. Goldman D.I., Swinney H.L.: Signatures of glass formation in a fluidized bed of hard spheres. Phys. Rev. Lett. 96, 145702 (2006)

    Article  ADS  Google Scholar 

  7. Schröter M., Nägle S., Radin C., Swinney H.L.: Phase transition in a static granular system. Europhys. Lett. 78, 44004 (2007)

    Article  ADS  Google Scholar 

  8. Hatano T., Otsuki M., Sasa S.: Criticality and scaling relations in a sheared granular material. J. Phys. Soc. Japan 76, 023001 (2007)

    Article  ADS  Google Scholar 

  9. Ertas D., Halsey T.C.: Granular gravitational collapse and chute flow. Europhys. Lett. 60, 931 (2002)

    Article  ADS  Google Scholar 

  10. Kumaran V.: The constitutive relation for the granular flow of rough particles and its application to the flow down an incline plane. J. Fluid Mech. 561, 1 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Jenkins J.T.: Dense shearing flows of inelastic disks. Phys. Fluids 18, 103307 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  12. Jenkins J.T.: Dense inclined flows of inelastic spheres. Gran. Matt. 10, 47 (2007)

    Article  Google Scholar 

  13. Garzo V., Dufty J.W.: Dense fluid transport for inelastic hard spheres. Phys. Rev. E 59, 5895 (1999)

    Article  ADS  Google Scholar 

  14. Pouliquen O.: Scaling laws in granular flows down a bumpy inclined plane. Phys. Fluids 11, 542 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Jop P., Forterre Y., Pouliquen O.: Crucial role of sidewalls in granular surface flows: consequences for the rheology. J. Fluid Mech. 451, 167 (2005)

    Article  ADS  Google Scholar 

  16. Jenkins J.T., Richman M.W.: Grad’s 13-moment system for a dense gas of inelastic spheres. Arch. Ration. Mech. Anal. 87, 355 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  17. MiDi G.D.R.: On dense granular flows. Eur. Phys. J. E 14, 341 (2004)

    Article  Google Scholar 

  18. Da Cruz F., Emem S., Prochnow M., Roux J.-N., Chevoir F.: Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72, 021309 (2005)

    Article  ADS  Google Scholar 

  19. Jenkins J.T., Zhang C.: Kinetic theory for identical, frictional, nearly elastic spheres. Phys. Fluids 14, 1228 (2002)

    Article  ADS  Google Scholar 

  20. Yoon D.K., Jenkins J.T.: Kinetic Theory for identical, frictional, nearly elastic disks. Phys. Fluids 17, 083301 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  21. Carnahan N.F., Starling K.E.: Equations of state of non-attracting rigid spheres. J. Chem. Phys. 51, 635 (1969)

    Article  ADS  Google Scholar 

  22. Herbst O., Huthmann M., Zippelius A.: Dynamics of inelastically colliding spheres with Coulomb friction: dynamics of the relaxation of translational and rotational energy. Gran. Matt. 2, 211 (2000)

    Article  Google Scholar 

  23. Foerster S.F., Louge M.Y., Chang H., Allia K.: Measurements of Collision properties of small spheres. Phys. Fluids 6, 1108 (1994)

    Article  ADS  Google Scholar 

  24. Torquato S.: Nearest-neighbor statistics for packings of hard spheres and disks. Phys. Rev. E 51, 3170 (1995)

    Article  ADS  Google Scholar 

  25. Richman M.W.: Boundary conditions based on a modified Maxwellian velocity distribution function for flows of identical, smooth, nearly elastic spheres. Acta Mech. 75, 227 (1988)

    Article  Google Scholar 

  26. Jenkins J.T.: Boundary conditions for collisional grain flows at bumpy, frictional walls. In: Poschel, T., Luding, S. (eds) Granular Gases 125, Springer, Berlin (2001)

    Google Scholar 

  27. Pasini J.M., Jenkins J.T.: Aeolian transport with collisional suspension. Phil. Trans. Roy. Soc. 363, 1625 (2005)

    Article  MATH  ADS  Google Scholar 

  28. Jenkins J.T., Hanes D.M.: The balance of momentum and energy at an interface between colliding and freely flying grains in a rapid granular flow. Phys. Fluids A 5, 781 (1993)

    Article  ADS  Google Scholar 

  29. Silbert L.E., Ertas D., Grest G.S., Halsey T.C., Levine D., Plimpton S.J.: Granular flow down an inclined plane: Bagnold scaling and rheology. Phys. Rev. E 64, 51302 (2001)

    Article  ADS  Google Scholar 

  30. Mitarai N., Nakanishi H.: Bagnold scaling, density plateau, and kinetic theory analysis of dense granular flow. Phys. Rev. Lett. 94, 128001 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James T. Jenkins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jenkins, J.T., Berzi, D. Dense inclined flows of inelastic spheres: tests of an extension of kinetic theory. Granular Matter 12, 151–158 (2010). https://doi.org/10.1007/s10035-010-0169-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-010-0169-8

Keywords

Navigation