Skip to main content
Log in

Steady state flow of cohesive and non-cohesive powders

Investigations in experiment and simulation

  • Published:
Granular Matter Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Steady state flow of powders is a crucial concept to investigate the powders’ strength and flow properties. This state is defined as a continuous deformation of the material without volume change while the stresses at the specimen’s boundaries remain constant. Recent investigations have shown that this state, especially for cohesive powders, is not always as constant as it should be by definition. This paper presents experimental and numerical work, both for cohesive and non-cohesive powders. The experimental part focuses on the use of different control strategies, leading to steady state flow of different quality. Differences between steady state flow for cohesive and non-cohesive powders are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

area (mm2)

d shear :

shear distance (mm)

δ ij :

Kronecker-delta (–)

Δh :

lid displacement (mm)

\({\epsilon}\) :

strain (%)

\({\epsilon_{\rm V}}\) :

volumetric strain (%)

\({d\epsilon/dt}\) :

strain rate (%/s)

E :

porosity (–)

E cor :

loss-corrected porosity (–)

F c :

cohesive force (N)

σ :

stress (kPa)

σ normal :

normal stress (kPa)

τ :

shear stress (Pa)

τ SSF :

shear stress at steady state flow (Pa)

ω :

angular velocity (1/s)

λ :

stress ratio (–)

L :

distance (mm)

N :

normal load (N)

m :

mass (kg)

m 0 :

initial mass (kg)

Δm :

loss mass (kg)

r :

particle radius (mm)

ρ b :

bulk density (kg/m3)

ρ s :

solid density (kg/m3)

s :

relative width of particle size distribution (–)

t :

time (s)

t max :

maximum experimental time (s)

v shear :

shear velocity (mm/min)

V :

volume (cm3)

V 0 :

initial volume (cm3)

V Box :

volume of TBT (cm3)

x 50 :

median particle size (μm)

CD:

Contact dynamics

DEM:

Discrete element method

LC:

Load cell

LW:

Loading walls

MD:

Molecular dynamics

RW:

Receding walls

SSF:

Steady state flow

TBT:

True biaxial shear tester

References

  1. Jenike, A.W.: Gravity Flow of Bulk Solids, Bull. 108, Engineering Experiment Station, University of Utah (1961)

  2. Jenike, A.W.: Storage and Flow of Solids, Bull. 123, Engineering Experiment Station, University of Utah (1964)

  3. Röck, M., Morgeneyer, M., Schwedes, J., Brendel, L., Kadau, D., Wolf, D.E.: Visualization of Shear Motions of Cohesive Powders in the True Biaxial Shear Tester. In: Proceedings Fifth World Congress on Particle Technology, 2006, Orlando, Florida, USA, 115 (2006)

  4. Brendel, L., Kadau, D., Wolf, D.E., Röck, M., Morgeneyer, M., Schwedes, J.: Cohesive Powders: Steady State Flow and Boundary Conditions. In: Powders and Grains, 2005, Balkema, Leiden, pp. 569–573 (2005)

  5. Morgeneyer, M., Brendel, L., Farkas, Z., Kadau, D., Wolf, D.E., Schwedes, J.: Can one make a powder forget its history? In: Proceedings of the 4th international conference for conveying and handling of particulate solids, Budapest, pp. 12–118 (2003)

  6. Morgeneyer, M.: Mechanische Eigenschaften kohäsiver Schüttgüter, Clemens Eichhorn Verlag für Hochschulschriften, Braunschweig (2004)

  7. Schwedes, J.: Review on testers for measuring flow properties of bulk solids. Granul. Matter 5, 1–43 (2003)

    Article  ADS  Google Scholar 

  8. Ludwik, L.: Elemente der Technologischen Mechanik. Springer, Berlin (1909)

    MATH  Google Scholar 

  9. Schulze, D., Heinrici, H., Zetzener, H.: The ring shear tester as a valuable tool for silo design and powder characterization. Powder Handl. Process. 13, 19–24 (2001)

    Google Scholar 

  10. Unger, T., Kertesz, J.: The contact dynamics method for granular media. In Modeling of Complex Systems, p. 116–138, Melville, New York, American Institute of Physics. cond-mat/0211696 (2003)

  11. Hinrichsen, H., Wolf, D.E.: The Physics of Granular Media. Wiley-VCH, Berlin (2004)

    Google Scholar 

  12. Kadau, D., Schwesig, D., Theuerkauf, J., Wolf, D.E.: Influence of particle elasticity in shear testers. Granul. Matter 8, 35–40 (2006)

    Article  Google Scholar 

  13. Kadau, D., Bartels, G., Brendel, L., Wolf, D.E.: Pore Stabilization in Cohesive Granular Systems. Phase Transit. 76, 315–331 (2003)

    Article  Google Scholar 

  14. Kadau, D., Brendel, L., Bartels, G., Wolf, D.E., Morgeneyer, M., Schwedes, J.: Macroscopic and microscopic investigation on the history dependence of the mechanical behaviour of powders. Chem. Eng. Trans. 3, 979–984 (2003)

    Google Scholar 

  15. Nowak, M.: Spannungs-Dehnungsverhalten von Kalkstein in der Zweiaxialbox. PhD Thesis, TU Braunschweig (1993)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Röck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Röck, M., Morgeneyer, M., Schwedes, J. et al. Steady state flow of cohesive and non-cohesive powders. Granular Matter 10, 285–293 (2008). https://doi.org/10.1007/s10035-008-0088-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-008-0088-0

Keywords

Navigation