Skip to main content
Log in

Ball Tips of Micro/Nano Probing Systems: A Review

  • Review
  • Published:
Chinese Journal of Mechanical Engineering Submit manuscript

Abstract

To satisfy the measuring demands for the micro components of the industry, micro/nano probing systems with various ball tips have been developed. However, most of them cannot be used to measure the real micro geometrical features high precisely because the parameters of the ball tips are not appropriate. The ball tips with a diameter of less than 100 µm, a sphericity and eccentricity of far less than 1 µm are required urgently. A review on the state-of-the-art of ball tips of micro/nano probing systems is presented. The material characteristics and geometric parameters of now available ball tips are introduced separately. The existing fabrication methods for the ball tips are demonstrated and summarized. The ball tips’ future trends, which are smaller diameter, better sphericity and smaller eccentricity, are proposed in view of the practical requirements of high-precision measurement for micro geometrical features. Some challenges have to be faced in future, such as the promotion and high-precision measurement for the small ball tip’s sphericity and eccentricity. Fusion method without the gravity effect when the molten ball tip solidifying is a more suitable way to fabricate a small diameter ball tip together with a shaft.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. WECKENMANN A, ESTLER T, PEGGS G, et al. Probing systems in dimensional metrology[J]. CIRP Annals-Manufacturing Technology, 2004, 53(2): 657–684.

  2. MURAKAMI H, KATSUKI A, SAJIMA T, et al. Reduction of liquid bridge force for 3D microstructure measurements[J]. Applied Sciences, 2016, 6(5): 1–11.

  3. HE Gaofa, TANG Yike, ZHOU Chuande, et al. Novel resonant accelerometer with micro leverage fabricated by MEMS technology[J]. Chinese Journal of Mechanical Engineering, 2011, 24(3): 495–500.

  4. WECKENMANN A, PEGGS G, HOFFMANN J. Probing systems for dimensional micro- and nano-metrology[J]. Measurement Science & Technology, 2006, 17(3): 504–509.

  5. JÜPTNER W, BOTHE T. Sub-nanometer resolution for the inspection of reflective surfaces using white light[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2009, 7398(16-17): 1694–1698.

  6. Kuang-Chao FAN, FEI Yetai, YU Xiaofen, et al. Development of a novel micro-CMM for 3D micro/nano measurements[J]. Measurement Science Technology, 2005, 17(3): 524–532.

  7. GUO Renfei, ZHUANG Jian, MA Li, et al. Multi-objective optimal design of high frequency probe for scanning ion conductance microscopy[J]. Chinese Journal of Mechanical Engineering, 2016, 29(1): 195–203.

  8. SHI L, KWON O, MINER C C, et al. Design and batch fabrication of probes for sub-100 nm scanning thermal microscopy[J]. Journal of Micro Electromechanical Systems, 2001, 10(3): 370–378.

  9. KINCAID J M, COHEN E G D. Nano- and pico-scale transport phenomena in fluids[J]. Journal of Statistical Physics, 2002, 109(3–4): 361–371.

  10. XU B, LIANG X, DONG M S, et al. Progress of nano-surface engineering[J]. International Journal of Materials & Product Technology, 2003, 18(4/5/6): 338–346.

  11. TAKAMASU Kiyoshi, OZAWA Satoshi, ASANO Takayuki, et al. Basic concepts of nano-CMM (coordinate measuring machine) with nanometer resolution[C]//The Japan-China Bilateral Symposium on Advanced Manufacturing Engineering, Tokyo, Japan, 1996: 155–158.

  12. THALMANN R, MELI F, KÜNG A. State of the art of tactile micro coordinate metrology[J]. Applied Sciences, 2016, 6(5): 1–13.

  13. WANG Dongxia, SONG Aiguo,WEN Xiulan, et al. Measurement uncertainty evaluation of conicity error inspected on CMM[J]. Chinese Journal of Mechanical Engineering, 2016, 29(1): 212–218.

  14. DAI G, BÜTEFISCH S, POHLENZ F, et al. A high precision micro/nano CMM using piezoresistive tactile probes[J]. Measurement Science & Technology, 2009, 20(8): 1118–1121.

  15. CLAVERLEY J D, LEACH R K. Development of a three-dimensional vibrating tactile probe for miniature CMMs[J]. Precision Engineering, 2013, 37(2): 491–499.

  16. SPAAN H,DONKER R,WIDDERSHOVEN I. Enabling ultra-precision coordinate metrology for large part[C]//Proceedings of the 10th Symposium on Measurement and Quality and Quality Control, New York, America, September5–9, 2010: 231–234.

  17. SCHWENKE H, WÄLDELE F, WEISKIRCH C, et al. Opto-tactile sensor for 2D and 3D measurement of small structures on coordinate measuring machines[J]. CIRP Annals-Manufacturing Technology, 2001, 50(1): 361–364.

  18. BRAND U, KLEINEBCSTEN T, SCHWENKE H. Development of a special CMM for dimensional metrology on microsystem components[C]//American Society for Precision Engineering. Proceedings of the 15th Annual Meeting of the ASPS, North Carolina, USA, 2000: 542–546.

  19. THELEN R,SCHULZ J,MEYCR P, et al. Approaching a sub-micron capability index using a werth fiber probe system WFP[C]//The 4th International Conference on Multi-Material Micro Manufacture, Dunbcath, Whittles Publ, 2008: 147–150.

  20. LI Ruijun, Kuang-Chao FAN, HUANG Qiangxian, et al. A long-stroke 3D contact scanning probe for micro/nano coordinate measuring machine[J]. Precision Engineering, 2016,43: 220–229.

  21. LI Ruijun, Kuang-Chao FAN, MIAO Jinwei, et al. An analogue contact probe using a compact 3D optical sensor for micro/nano coordinate measuring machines[J]. Measurement Science & Technology, 2014, 25(9): 1–33.

  22. LI Ruijun, XIANG Meng, HE Yaxiong, et al. Development of a high-precision touch-trigger probe using a single sensor[J]. Applied Sciences, 2016, 6(3): 220–229.

  23. YANG P, TAKAMURA T, TAKAHASHI S, et al. Development of high-precision micro-coordinate measuring machine: Multi-probe measurement system for measuring yaw and straightness motion error of XY linear stage[J]. Precision Engineering, 2011, 35(3): 424–430.

  24. FUJIWARA M, YAMAGUCHI A, TAKAMASU K, et al. Evaluation of stages of nano-CMM[M]. New York: Springer US, 2001.

  25. KURFESS T R, HODGSON T J. Metrology, sensors and control[J]. Micromanufacturing, 2007: 89–109.

  26. KÜNG A, MELI F, THALMANN R. Ultraprecision micro-CMM using a low force 3D touch probe[J]. Measurement Science and Technology, 2007, 18(2): 319–327.

  27. LI Ruijun, Kuang-Chao FAN, HUANG Qiangxian, et al. Design of a large-scanning-range contact probe for nano-coordinate measurement machines[J]. Optical Engineering, 2012, 51(8): 527–529.

  28. MURALIKRISHNAN B, STONE J A, STOUP J R. Fiber deflection probe for small hole metrology[J]. Precision Engineering, 2006, 30(2): 154–164.

  29. HAITJEMA H, PRIL W O, SCHELLEKENS P H J. Development of a silicon-based nanoprobe system for 3-D measurements[J]. CIRP Annals-Manufacturing Technology, 2001, 50(1): 365–368.

  30. STONE J, MURALIKRISHNAN B, SAHAY C. Geometric effects when measuring small holes with micro contact probes[J]. Journal of Research of the National Institute of Standards & Technology, 2011, 116(2): 573–587.

  31. ITO S, KIKUCHI H, CHEN Y, et al. A micro-coordinate measurement machine (CMM) for large-scale dimensional measurement of micro-slits[J]. Applied Sciences, 2016, 6(5): 1–20.

  32. SUN Y T A, TSENG K Y, SHEU D Y. Investigating characteristics of the static tri-switches tactile probing structure for micro-coordinate measuring machine (CMM)[J]. Applied Sciences, 2016, 6(7): 1–11.

  33. JI H, KONG L X, HSU H Y, et al. A high-sensitivity optical touch trigger probe for down scaled 3D CMMs[C]//The 3rd International Symposium on Precision Mechanical Measurements, Urumqi, China, August 8–August 11, 2006: 174–180.

  34. PEGGS G N, LEWIS A J, OLDFIELD S, et al. Design for a compact high-accuracy CMM[J]. CIRP Annals - Manufacturing Technology, 1999, 48(1): 417–420.

  35. CLAVERLEY J D, LEACH R K. A vibrating micro-scale CMM probe for measuring high aspect ratio structures[J]. Microsystem Technologies, 2010, 16(8): 1507–1512.

  36. LEACH R K, MURPHY J. The design of co-ordinate measuring probe for characterizing truly three-dimensional micro-structures [C]//The 4th Euspen International Conference, Glasgow, UK, May 30–June 3, 2004: 230–231.

  37. SHEU D Y, CHENG C C. Assembling ball-ended styli for CMM’s tactile probing heads on micro EDM[J]. The International Journal of Advanced Manufacturing Technology, 2013, 65(1–4): 485–492.

  38. KAO S M, SHEU D Y. Developing a novel tri-switch tactile probing structure and its measurement characteristics on micro-CMM[J]. Measurement, 2013, 46(9): 3019–3025.

  39. SHIMIZU Y, XU B, GAO W. Fabrication of micro-ball styluses for scanning-type surface form metrology[J]. International Journal of Nanomanufacturing, 2012, 8(1/2): 87–105.

  40. MASUZAWA T, FUJINO M, KOBAYASHI K, et al. Wire electro-discharge grinding for micro-machining[J]. CIRP Annals - Manufacturing Technology, 1985, 34(1): 431–434.

  41. SHEU D Y. Micro-spherical probes machining by EDM[J]. Journal of Micromechanics & Microengineering, 2004, 15(1): 185–189.

  42. SHEU D Y. Multi-spherical probe machining by EDM: Combining WEDG technology with one-pulse electro-discharge[J]. Journal of Materials Processing Technology, 2004, 149(1–3): 597–603.

  43. SHEU D Y. Study on an evaluation method of micro CMM spherical stylus tips by µ-EDM on-machine measurement[J]. Journal of Micromechanics & Microengineering, 2010, 20(7): 75003–75007.

  44. ZENG Yongbin, MENG Dong, LI Hansong, et al. Research on the forming of micro-spherical electrode [J]. Journal of Mechanical Engineering, 2011, 47(15): 169–174.

  45. Sheu D Y. Manufacturing tactile spherical stylus tips by combination process of micro electro chemical and one-pulse electro discharge technology[J]. The International Journal of Advanced Manufacturing Technology, 2014, 74(5): 741–747.

  46. WANG Zhiwei, Kuang-Chao FAN, LI Ruijun, et al. Experimental study on fabricating micro monolithic tungsten probing ball for micro-CMM[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2013, 8759: 87594 W–87594 W–7.

  47. FAN K C, HSU H Y, HUNG P Y, et al. Experimental study of fabricating a micro ball tip on an optical fibre[J]. Journal of Optics A Pure & Applied Optics, 2006, 8(9): 782–787.

  48. MURALIKRISHNAN B, STONE J A, STOUP J R. Fiber deflection probe for small hole metrology[J]. Precision Engineering, 2006, 30(2): 154–164.

  49. DELADI S, IANNUZZI D, GADGIL V J, et al. Carving fiber-top optomechanical transducers from an optical fiber[J]. Journal of Micromechanics & Microengineering, 2006, 16(5): 886–889.

  50. TACHIKURA M. Fusion mass-splicing for optical fibers using electric discharges between two pairs of electrodes[J]. Applied Optics, 1984, 23(3): 492–498.

  51. HATAKEYAMA I, TSUCHIYA H. Fusion splices for optical fibers by discharge heating[J]. Applied Optics, 1978, 17(12): 1959–1964.

  52. YU Huijuan, HUANG Qiangxian, ZHAO Jian. Fabrication of an optical fiber micro-sphere with a diameter of several tens of micrometers[J]. Materials, 2014, 7(7): 4878–4895.

  53. TACHIKURA M. Fusion mass-splicing for optical fibers using electric discharges between two pairs of electrodes[J]. Applied Optics, 1984, 23(3): 492–498.

  54. ZUO Tiechuang,CHEN Hong. Green manufacture in 21 century-laser manufacturing technology and application[J]. Journal of Mechanical Engineering, 2009, 45(10): 106–110 (in Chinese).

  55. HARRINGTON J A. Sculpted optical silica fiber tips for use in Nd:YAG contact tip laser surgery: part 1—fabrication techniques[J]. Optical Engineering, 1992, 31(7): 1404–1409.

  56. HARRINGTON J A. Sculpted optical silica fiber tips for use in Nd:YAG contact tip laser surgery: part 2—optical properties and tissue effects[J]. Optical Engineering, 2005, 31(31): 1410–1416.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuang-Chao FAN.

Additional information

Supported by National Natural Science Foundation of China(Grant Nos. 51675157, 51475131), and State Key Laboratory of Precision Measuring Technology and Instruments of China (Grant No. PIL1401).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LI, R., CHEN, C., LI, D. et al. Ball Tips of Micro/Nano Probing Systems: A Review. Chin. J. Mech. Eng. 30, 222–230 (2017). https://doi.org/10.1007/s10033-017-0082-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10033-017-0082-8

Keywords

Navigation