Skip to main content

Advertisement

Log in

Soil Changes in Model Tropical Ecosystems: Effects of Stand Longevity Outweigh Plant Diversity and Tree Species Identity in a Fertile Volcanic Soil

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Plant or community longevity can strongly influence soil fertility, yet it is seldom among the functional traits considered in studies of biodiversity and ecosystem functioning. For 11 years we tracked the influences of plant longevity, life-form richness, and tree species identity on 12 soil chemical properties in model ecosystems on an allophanic Andisol in the humid lowlands of Costa Rica. The design employed three levels of plant longevity: 1 year and 4 years (trees cut without biomass removal and replanted to same species), and uncut; two levels of life-form diversity (tree alone, or tree plus palm plus giant perennial herb); and three eudicot, non-nitrogen (N)-fixing tree species. The site’s Andisol proved remarkably resistant to treatment-induced loss of fertility. Although the magnitude of changes was low, most properties declined during the early phases of plant growth, then stabilized or increased. The greatest declines occurred in stands of shortest life span, where organic matter inputs were low and leaching rates were high. In contrast, massive depositions of organic matter every 4 years sustained or augmented surface-soil cation concentrations, pH, organic carbon (SOC), and extractable phosphorus (P). An increase in diversity from one life form to three led to more SOC and calcium (Ca), whereas potassium (K) decreased due to a species effect: high K uptake by the giant herb. The most notable tree-species effects concerned P: It increased under the species that had the highest litterfall and may facilitate apatite weathering; it decreased under the species of highest tissue-N concentrations. Through its effects on soil exposure and organic matter returns, plant longevity exerted greater influence on more soil properties than either diversity or species identity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Bertsch F. 1995. La fertilidad de los suelos y su manejo. 1a edn. San José, Costa Rica: Asociación Costarricense de la Ciencia del Suelo. p 157.

  • Bigelow SW, Ewel JJ, Haggar JP. 2004. Enhancing nutrient retention in tropical tree plantations: no short cuts. Ecol Appl 14:28–46.

    Article  Google Scholar 

  • Binkley D. 1995. The influence of tree species on forest soils: processes and patterns. In: Mead DJ, Cornforth IS, Eds. Proceedings of the Trees and Soil Workshop, Agronomy Society of New Zealand Special Publication No. 10. Canterbury: Lincoln University Press. p 1–33.

  • Binkley D, Fisher RF. 2013. Ecology and management of forest soils, Vol. 4Hoboken, NJ: Wiley-Blackwell. p 362.

    Google Scholar 

  • Bolker BM. 2008. Ecological models and data in R. New Jersey: Princeton University Press. p 408.

    Google Scholar 

  • Cardinale BJ, Matulich KL, Hooper DU, Brynes JE, Duffy E, Gamfeldt L, Balvanera P, O’Connor MI, Gonzalez A. 2011. The functional role of producer diversity in ecosystems. Am J Bot 98:572–92.

    Article  PubMed  Google Scholar 

  • Cole TG, Ewel JJ. 2006. Allometric equations for four valuable tropical tree species. For Ecol Manage 229:351–60.

    Article  Google Scholar 

  • Cox T, Glover JD, Van Tassel DL, Cox CM, DeHaan L. 2006. Prospects for developing perennial grain crops. BioScience 56:649–59.

    Article  Google Scholar 

  • Crews TE. 2005. Perennial crops and endogenous nutrient supplies. Renewable Agriculture and Food Systems 20:25–37.

    Article  Google Scholar 

  • Crow SE, Lajtha K, Bowden RD, Yano Y, Brant JB, Caldwell BA, Sulzman EW. 2009. Increased coniferous needle inputs accelerate decomposition of soil carbon in old-growth forest. For Ecol Manage 258:2224–32.

    Article  Google Scholar 

  • Culman SW, DuPont ST, Glover JD, Buckley DH, Fick GW, Ferris H, Crews TE. 2010. Long-term impacts of high-input annual cropping and unfertilized perennial grass production on soil properties and belowground food webs in Kansas, USA. Agric Ecosyst Environ 137:13–24.

    Article  Google Scholar 

  • Dahlgren RA, Saigusa M, Ugolini FC. 2004. The nature, properties and management of volcanic soils. Adv Agron 82:113–82.

    Article  CAS  Google Scholar 

  • Dijkstra FA, Smits MM. 2002. Tree species effects on calcium cycling: the role of calcium uptake in deep soils. Ecosystems 5:385–98.

    Article  CAS  Google Scholar 

  • Dijkstra FA, Cheng W. 2007. Interactions between soil and tree roots accelerate long-term soil carbon decomposition. Ecol Lett 10:1046–53.

    Article  PubMed  Google Scholar 

  • DuPont ST, Culman SW, Ferris H, Buckley DH, Glover JD. 2010. No-tillage conversion of harvested perennial grassland to annual cropland reduces root biomass, decreases active carbon stocks, and impacts soil biota. Agric Ecosyst Environ 137:25–32.

    Article  CAS  Google Scholar 

  • Eklund TJ, McDowell WH, Pringle CM. 1997. Seasonal variation of tropical precipitation chemistry: La Selva, Costa Rica. Atmos Environ 31:3903–10.

    Article  CAS  Google Scholar 

  • Ewel JJ. 2006. Species and rotation frequency influence soil nitrogen in simplified tropical plant communities. Ecol Appl 16:490–502.

    Article  PubMed  Google Scholar 

  • Ewel JJ, Bigelow SW. 2011. Tree species identity and interactions with neighbors determine nutrient leaching in model tropical forests. Oecologia 167:1127–40.

    Article  PubMed  Google Scholar 

  • Ewel JJ, Hiremath AJ. 2005. Plant–plant interactions in tropical forests. In: Bursalem D, Pinnard M, Hartley S, Eds. Biotic interactions in the tropics: their role in the maintenance of species diversity. Cambridge: Cambridge University Press. p 3–34.

    Chapter  Google Scholar 

  • Ewel JJ, Mazzarino MJ. 2008. Competition from below for light and nutrients shifts productivity among tropical species. Proc Natl Acad Sci 105:18836–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ewel JJ, Mazzarino MJ, Berish CW. 1991. Tropical soil fertility changes under monocultures and successional communities of different structure. Ecol Appl 1:289–302.

    Article  Google Scholar 

  • Finzi AC, Canham CD, Van Breemen N. 1998a. Canopy tree–soil interactions within temperate forests: species effects on pH and cations. Ecol Appl 8:447–54.

    Google Scholar 

  • Finzi AC, Van Breemen N, Canham CD. 1998b. Canopy tree–soil interactions within temperate forests: species effects on soil carbon and nitrogen. Ecol Appl 8:440–6.

    Google Scholar 

  • Fornara DA, Tilman D. 2008. Plant functional composition influences rates of soil carbon and nitrogen accumulation. J Ecol 96:314–22.

    Article  CAS  Google Scholar 

  • Forrester DI, Bauhus J, Cowie AL, Vanclay JK. 2006. Mixed-species plantations of Eucalyptus with nitrogen-fixing trees: a review. For Ecol Manage 233:211–30.

    Article  Google Scholar 

  • Gleeson SK, Tilman D. 1994. Plant allocation, growth rate and successional status. Funct Ecol 8:543–50.

    Article  Google Scholar 

  • Glover JD, Reganold JP, Bell LW, Borevitz J, Brummer EC, Buckler ES, Cox CM, Cox TS, Crews TE, Culman SW, DeHaan LR, Eriksson D, Gill BS, Holland J, Hu F, Hulke BS, Ibrahim AMH, Jackson W, Jones SS, Murray SC, Paterson AH, Ploschuk E, Sacks EJ, Snapp S, Tao D, Van Tassel DL, Wade LJ, Wyse DL, Xu Y. 2010. Increased food and ecosystem security via perennial grains. Science 328:1638–9.

    Article  CAS  PubMed  Google Scholar 

  • Gordon WS, Jackson RB. 2000. Nutrient concentrations in fine roots. Ecology 81:275–80.

    Article  Google Scholar 

  • Guckland A, Corre MD, Flessa H. 2010. Variability of soil N cycling and N2O emission in a mixed deciduous forest with different abundance of beech. Plant Soil 336:25–38.

    Article  CAS  Google Scholar 

  • Guckland A, Jacob M, Flessa H, Thomas FM, Leuschner C. 2009. Acidity, nutrient stocks, and organic-matter content in soils of a temperate deciduous forest with different abundance of European beech (Fagus sylvatica L.). J Plant Nutr Soil Sci 172:500–11.

    Article  CAS  Google Scholar 

  • Haggar JP, Ewel JJ. 1997. Primary productivity and resource partitioning in model tropical ecosystems. Ecology 78:1211–21.

    Article  Google Scholar 

  • Hartemink AE. 2003. Soil fertility decline in the tropics: with case studies on plantations. Wallingford: CAB International. p 360.

    Book  Google Scholar 

  • Herbert DA, Fownes JH, Vitousek PM. 1999. Hurricane damage to Hawaiian forest: nutrient supply rate affects resistance and resilience. Ecology 80:908–20.

    Article  Google Scholar 

  • Hiremath AJ. 2000. Photosynthetic nutrient-use efficiency in three fast-growing tropical trees with differing leaf longevities. Tree Physiol 20:937–44.

    Article  CAS  PubMed  Google Scholar 

  • Hiremath AJ, Ewel JJ, Cole TG. 2002. Nutrient use efficiency in three fast-growing tropical trees. For Sci 48:662–72.

    Google Scholar 

  • Hooper DU, Vitousek PM. 1998. Effects of plant composition and diversity on nutrient cycling. Ecol Monogr 68:121–49.

    Article  Google Scholar 

  • Jobbágy EG, Jackson RB. 2003. Patterns and mechanisms of soil acidification in the conversion of grasslands to forests. Biogeochemistry 64:205–29.

    Article  Google Scholar 

  • Jug A, Makeschin F, Rehfuess KE, Hofmann-Schielle C. 1999. Short-rotation plantations of balsam poplars, aspen and willows on former arable land in the Federal Republic of Germany. III. Soil ecological effects. For Ecol Manage 121:85–99.

    Article  Google Scholar 

  • Kikuzawa K. 1991. A cost–benefit analysis of leaf habit and leaf longevity of trees and their geographical pattern. Am Nat 138:1250–63.

    Article  Google Scholar 

  • Kochsiek A, Tan S, Russo SE. 2013. Fine root dynamics in relation to nutrients in oligotrophic Bornean rain forest soils. Plant Ecol 214:869–82.

    Article  Google Scholar 

  • Kuzyakov Y, Friedel JK, Stahr K. 2000. Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:1485–98.

    Article  CAS  Google Scholar 

  • Lahav E. 1995. Banana nutrition. In: Gowen S, Ed. Bananas and plantains. London: Chapman and Hall. p 258–316.

    Chapter  Google Scholar 

  • Lodge DJ, McDowell WH, McSwiney CP. 1994. The importance of nutrient pulses in tropical forests. Trends Ecol Evol 9:384–7.

    Article  CAS  PubMed  Google Scholar 

  • Markewitz D, Richter DD, Allen HL, Urrego JB. 1998. Three decades of observed soil acidification in the Calhoun Experimental Forest: has acid rain made a difference? Soil Sci Soc Am J 62:1428–39.

    Article  CAS  Google Scholar 

  • Mueller KE, Eissenstat DM, Hobbie SE, Oleksyn J, Jagodzinski AM, Reich PB, Chadwick OA, Chorover J. 2012. Tree species effects on coupled cycles of carbon, nitrogen, and acidity in mineral soils at a common garden experiment. Biogeochemistry 111:601–14.

    Article  CAS  Google Scholar 

  • Nadrowski K, Worth C, Scherer-Lorenzen M. 2010. Is forest diversity driving ecosystem function and service? Environ Sustain 2:75–9.

    Google Scholar 

  • Nakamaru Y, Nanzyo M, Yamasaki S-I. 2000a. Utilization of apatite in fresh volcanic ash by pigeonpea and chickpea. Soil Sci Plant Nutr 46:591–600.

    Article  Google Scholar 

  • Nakamaru Y, Nanzyo M, Yamasaki S-I. 2000b. Short-term reaction of apatite in fresh Pinatubo volcanic ash with reactive components in the soil-plant system. Jpn J Soil Sci Plant Nutr 71:55–62.

    CAS  Google Scholar 

  • Nanzyo M. 2002. Unique properties of volcanic ash soils. Glob Environ Res 6:99–112.

    CAS  Google Scholar 

  • Ostertag R, Scatena FN, Silver WL. 2003. Forest floor decomposition following hurricane litter inputs in several Puerto Rican forests. Ecosystems 6:261–73.

    Article  CAS  Google Scholar 

  • Paul KI, Polglase PJ, Nyakuengama JG, Khanna PK. 2002. Change in soil carbon following afforestation. For Ecol Manage 168:241–57.

    Article  Google Scholar 

  • Quijas S, Jackson LE, Maass M, Schmid B, Raffaelli D, Balvanera P. 2012. Plant diversity and generation of ecosystem services at the landscape scale: expert knowledge assessment. J Appl Ecol 49:929–40.

    Article  Google Scholar 

  • Reich A, Holbrook NM, Ewel JJ. 2004. Developmental and physiological correlated of leaf size in Hyeronima alchorneoides (Euphorbiaceae). Am J Bot 91:582–9.

    Article  PubMed  Google Scholar 

  • Reich PB, Oleksyn J, Modrzynski J, Mrozinski P, Hobbie SE, Eissenstat DM, Chorover J, Chadwick OA, Hale CM, Tjoelker MG. 2005. Linking litter calcium, earthworms and soil properties: a common garden test with 12 tree species. Ecol Lett 8:811–18.

    Article  Google Scholar 

  • Resh SC, Binkley D, Parrotta JA. 2002. Greater soil carbon sequestration under nitrogen-fixing trees compared with Eucalyptus species. Ecosystems 5:217–31.

    Article  CAS  Google Scholar 

  • Russell AE, Cambardella CA, Ewel JJ, Parkin TB. 2004. Species, rotation, and life-form diversity effects on soil carbon in experimental tropical ecosystems. Ecol Appl 14:47–60.

    Article  Google Scholar 

  • Russell AE, Raich JW, Valverde-Barrantes OJ, Fisher RF. 2007. Tree species effects on soil properties in experimental plantations in tropical moist forest. Soil Sci Soc Am J 71:1389–97.

    Article  CAS  Google Scholar 

  • Russell AE, Raich JW. 2012. Rapidly growing tropical trees mobilize remarkable amounts of nitrogen, in ways that differ surprisingly among species. Proc Natl Acad Sci 109:10398–402.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saha SK, Nair PKR, Nair VD, Kumar BM. 2009. Soil carbon stock in relation to plant diversity of homegardens in Kerala, India. Agrofor Syst 76:53–65.

    Article  Google Scholar 

  • Sanchez PA, Palm CA, Davey CB, Szott LT, Russell CE. 1985. Tree crops as soil improvers in the humid tropics. In: Cannell MGR, Jackson JE, Eds. Trees as crop plants. Huntington: Institute of Terrestrial Ecology. p 327–58.

    Google Scholar 

  • SAS. 2008. SAS/STAT® 9.2 User’s Guide. Cary, NC: SAS Institute Inc.

  • Sayer EJ, Heard MS, Grant HK, Marthews TR. 2011. Soil carbon release enhanced by increased tropical forest litterfall. Nat Clim Change 1:304–7.

    Article  CAS  Google Scholar 

  • Scherer-Lorenzen M. 2014. The functional role of biodiversity in the context of global change. In: Coomes DA, Burslem DFRP, Simonson WD, Eds. Forest and global change. New York: Cambridge University Press. p 195–237.

    Chapter  Google Scholar 

  • Scherer-Lorenzen M, Palmborg C, Prinz A, Schulze E-D. 2003. The role of plant diversity and composition for nitrate leaching in grasslands. Ecology 84:1539–52.

    Article  Google Scholar 

  • Schreeg LA, Mack MC, Turner BL. 2012. Leaf litter inputs decrease phosphate sorption in a strongly weathered tropical soil over two time scales. Biogeochemistry 113:507–24.

    Article  Google Scholar 

  • Seiwa K. 1999. Changes in leaf phenology are dependent on tree height in Acer mono, a deciduous broad-leaved tree. Ann Bot 83:355–61.

    Article  Google Scholar 

  • Siddique I, Engel VL, Parrotta JA, Lamb D, Nardoto GB, Ometto JPHB, Martinelli LA, Schmidt S. 2008. Dominance of legume trees alters nutrient relations in mixed species forest restoration plantings within seven years. Biogeochemistry 88:89–101.

    Article  CAS  Google Scholar 

  • Silver WL, Thompson AW, Reich A, Ewel JJ, Firestone MK. 2005. Nitrogen cycling in tropical plantation forests: potential controls on nitrogen retention. Ecol Appl 15:1604–14.

    Article  Google Scholar 

  • Soil Quality Institute. 2001. Long-term agricultural management effect on soil carbon. USDA, NRCS, Agronomy technical note 12.

  • Sollins P, Sancho F, Mata R, Sanford RL Jr. 1994. Soils and soil process research. In: McDade LA, Bawa KS, Hespenheide HA, Hartshorn GS, Eds. La Selva: ecology and natural history of a neotropical rain forest. Chicago, IL: University of Chicago Press. p 34–53.

    Google Scholar 

  • Spehn EM, Hector A, Joshi J, Scherer-Lorenzen M, Schmid B, Bazeley-White E, Beierkuhnlein C, Caldiera MC, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Högberg P, Huss-Danell K, Jumpponen A, Koricheva J, Leadley PW, Loreau M, Minns A, Mulder CPH, O’Donovan G, Otway SJ, Palmborg C, Pereira JS, Pfisterer AB, Prinz A, Read DJ, Schulze E-D, Siamantziouras A-SD, Terry AC, Troumbis AY, Woodward FI, Tachi S, Lawton JH. 2005. Ecosystems effects of biodiversity manipulation in European grasslands. Ecol Monogr 75:37–63.

    Article  Google Scholar 

  • Symstad AJ, Tilman D, Wilson J, Knops JMH. 1998. Species loss and ecosystem functioning: effects of species identity and community composition. Oikos 81:389–97.

    Article  Google Scholar 

  • Talkner U, Jansen M, Beese FO. 2009. Soil phosphorus status and turnover in central-European beech forest ecosystems with differing tree species diversity. Eur J Soil Sci 60:338–46.

    Article  CAS  Google Scholar 

  • Tilman D, Wedin D, Knops J. 1996. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379:718–20.

    Article  CAS  Google Scholar 

  • Torn MS, Trumbore SE, Chadwick OA, Vitousek PM, Hendricks DM. 1997. Mineral control of soil organic carbon storage and turnover. Nature 389:170–3.

    Article  CAS  Google Scholar 

  • Vincent AG, Turner BL, Tanner EVJ. 2010. Soil organic phosphorus dynamics following perturbation of litter cycling in tropical moist forest. Eur J Soil Sci 61:48–57.

    Article  CAS  Google Scholar 

  • Volk TA, Verwijst T, Tharakan PJ, Abrahamson LP, White EH. 2004. Growing fuel: a sustainability assessment of willow biomass crops. Front Ecol Environ 2:411–18.

    Article  Google Scholar 

  • Washburn CSM, Arthur MA. 2003. Spatial variability in soil nutrient availability in an oak-pine forest: potential effects of tree species. Can J For Res 33:2321–30.

    Article  Google Scholar 

  • Weitz AM, Grauel WT, Keller M, Veldkamp E. 1997. Calibration of time domain reflectometry technique using undisturbed soil samples from humid tropical soils of volcanic origin. Water Resour Res 33:1241–9.

    Article  Google Scholar 

  • Werner P. 1984. Changes in soil properties during tropical wet forest succession in Costa Rica. Biotropica 16:43–50.

    Article  Google Scholar 

  • Zak DR, Holmes WE, White DC, Peacock AD, Tilman D. 2003. Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology 84:2042–50.

    Article  Google Scholar 

Download references

Acknowledgments

We thank S. W. Bigelow, M. Cifuentes, R. Bedoya, J. P. Haggar, A. J. Hiremath, P. Leandro, J. Pérez, M. J. Sánchez, and the crews they supervised for management of the field sites, sample preparation, and laboratory analyses. We thank L. A. Schreeg, R. A. Dahlgren, P.F. Grierson, and two anonymous reviewers for comments on earlier versions. This research was supported by the U.S. National Science Foundation (currently award DEB-1035318), U.S. Forest Service, Andrew W. Mellon Foundation, and CONICET Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Ewel.

Additional information

Author’s Contribution

JJE conceived of and designed the study, performed research, and wrote the paper; MJM performed research and wrote the paper; GC analyzed data and wrote the paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Table S1 (RTF 139 kb)

Supplemental Table S2 (RTF 77 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ewel, J.J., Mazzarino, M.J. & Celis, G. Soil Changes in Model Tropical Ecosystems: Effects of Stand Longevity Outweigh Plant Diversity and Tree Species Identity in a Fertile Volcanic Soil. Ecosystems 17, 820–836 (2014). https://doi.org/10.1007/s10021-014-9753-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-014-9753-9

Keywords

Navigation