Skip to main content

Advertisement

Log in

Climate Responses of Aboveground Productivity and Allocation in Fagus sylvatica: A Transect Study in Mature Forests

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

According to recent climate change scenarios, temperate forests will be increasingly exposed to droughts in the 21st century which are thought to affect productivity. Although decreasing timber yield with reduced precipitation has frequently been reported from temperate forests, the dependence of forest net primary production (NPP) on precipitation is little understood. In a 3-year transect study (2009–2011) carried out in 12 mature beech forests (Fagus sylvatica) along a precipitation gradient (820–540 mm y−1) in Northern Germany, we measured all aboveground NPP components (NPPa; stem wood, leaf mass, flower and fruit production) and analyzed relationships with monthly weather data. Because we measured NPPa under a broad range of precipitation levels, drought lengths and mast fruiting intensities, the climatic controls of aboveground productivity and carbon allocation could be analyzed in detail. Despite a significant decrease in annual (and growing season) precipitation sums along the transect, NPPa remained largely invariant in each of the years, but varied remarkably between the years (means of 981, 702, 955 g DM m−2 y−1, respectively). Variation in NPPa was most closely related to current year’s early summer weather conditions (June–July), whereas the patterns of biomass allocation to wood, leaf, and fruit production responded to the previous summer’s weather. Wood production cannot predict NPPa in beech due to alternative allocation priorities of vegetative and reproductive growth. Our results show that apparent drought-induced reductions in beech timber yield often are the result of allocation shifts toward fruit production triggered by warm and dry weather in the previous summer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Fig. 5

Similar content being viewed by others

References

  • Allen RG, Pereira LS, Raes D, Smith M. 1998. Crop evapotranspiration-Guidelines for computing crop water requirements: FAO Irrigation and drainage paper no. 56. Rome: FAO.

  • Ammer C, Albrecht L, Borchert H, Brosinger F, Dittmar C, Elling W, Ewald J, Felbermeier B, Gilsa H, Huss J. 2005. Future suitability of beech (Fagus sylvatica L.) in Central Europe: critical remarks concerning a paper of Rennenberg et al. (2004). Allgemeine Forst Jagdzeitung 176:60–7.

    Google Scholar 

  • Barbaroux C, Bréda N. 2002. Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees. Tree Physiol 22:1201–10.

    Article  PubMed  CAS  Google Scholar 

  • Barbaroux C, Bréda N, Dufrêne E. 2003. Distribution of above-ground and below-ground carbohydrate reserves in adult trees of two contrasting broad-leaved species (Quercus petraea and Fagus sylvatica). New Phytol 157:605–15.

    Article  Google Scholar 

  • Bartelink HH. 1997. Allometric relationships for biomass and leaf area of beech (Fagus sylvatica L). Annal For Sci 54:39–50.

    Article  Google Scholar 

  • Bates D, Maechler M. 2010. lme4: linear mixed-effects models using S4 classes. R package version 0.999999-0. http://cran.r-project.org/web/packages/lme4.

  • Bazzaz FA, Chiariello NR, Coley PD, Pitelka LF. 1987. Allocating resources to reproduction and defense. BioScience 37:58–67.

    Article  Google Scholar 

  • Becker M, Bert GD, Bouchon J, Doupouey JL, Picard JF, Ulrich E. 1995. Long-term changes in forest productivity in northeastern France: the dendroecological approach. Landmann G, Bonneau M, Eds. Forest decline and atmospheric deposition effects in the French mountains. Berlin: Springer. p143–56.

  • Bergel D. 1973. Formzahluntersuchungen an Buche, Fichte, europäischer Lärche und japanischer Lärche zur Aufstellung neuer Massentafeln. Allgemeine Forst Jagdzeitung 144:117–24.

    Google Scholar 

  • Biondi F. 1993. Climatic signals in tree rings of Fagus sylvatica L. from the central Apennines, Italy. Acta Oecol 14:57–71.

    Google Scholar 

  • Bolte A. 2005. Zur Zukunft der Buche in Mitteleuropa. AFZ Der Wald 20:1077–8.

    Google Scholar 

  • Bouriaud O, Bréda N, Dupouey J-L, Granier A. 2005. Is ring width a reliable proxy for stem-biomass increment? A case study in European beech. Can J For Res 35:2920–33.

    Article  Google Scholar 

  • Bréda N, Huc R, Granier A, Dreyer E. 2006. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Annal For Sci 63:625–44.

    Article  Google Scholar 

  • Burschel P. 1966. Untersuchungen in Buchenmastjahren. Forstwissenschaftliches Centralblatt 85:204–19.

    Article  Google Scholar 

  • Cannell MG, Dewar RC. 1994. Carbon allocation in trees: a review of concepts for modelling. Adv Ecol Res 25:59–104.

    Article  Google Scholar 

  • Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A. 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–33.

    Article  PubMed  CAS  Google Scholar 

  • Di Filippo A, Biondi F, Cufar K, De Luis M, Grabner M, Maugeri M, Presutti Saba E, Schirone B, Piovesan G. 2007. Bioclimatology of beech (Fagus sylvatica L.) in the Eastern Alps: spatial and altitudinal climatic signals identified through a tree-ring network. J Biogeogr 34:1873–92.

    Article  Google Scholar 

  • Dittmar C, Elling W. 1999. Jahrringbreite von Fichte und Buche in Abhaengigkeit von Witterung und Hoehenlage. Forstwissenschaftliches Centralblatt 118:251–70.

    Article  Google Scholar 

  • Dittmar C, Zech W, Elling W. 2003. Growth variations of common beech (Fagus sylvatica L.) under different climatic and environmental conditions in Europe: a dendroecological study. For Ecol Manage 173:63–78.

    Article  Google Scholar 

  • Dreyer E. 1997. Photosynthesis and drought in forest trees. Rennenberg H, Eschrich W, Ziegler H, Eds. Trees: contributions to modern tree physiology. Leiden: Backhuys Publishers. p 215–38.

  • Drobyshev I, Övergaard R, Saygin I, Niklasson M, Hickler T, Karlsson M, Sykes MT. 2010. Masting behaviour and dendrochronology of European beech (Fagus sylvatica L.) in southern Sweden. For Ecol Manage 259:2160–71.

    Article  Google Scholar 

  • Dyckmans J, Flessa H, Polle A, Beese F. 2000. The effect of elevated [CO2] on uptake and allocation of 13C and 15N in beech (Fagus sylvatica L.) during leafing. Plant Biol 2:113–20.

    Article  CAS  Google Scholar 

  • Eichhorn J, Dammann I, Schönfelder E, Albrecht M, Beck W, Paar U. 2008. Assessment of the drought resistance of beech exemplified by the 2003 extreme weather conditions. Ergebnisse Angewandter Forschung zur Buche 3:109–34.

    Google Scholar 

  • Eichhorn J, Paar U. 2000. Kronenzustand der Buche in Hessen und in Europa. AFZ Der Wald 55:600–2.

    Google Scholar 

  • Ellenberg H, Leuschner C. 2010. Vegetation Mitteleuropas mit den Alpen: in ökologischer, dynamischer und historischer Sicht. 6th edn. Stuttgart: Ulmer UTB. p 1334 pp.

    Google Scholar 

  • Finér L, Ohashi M, Noguchi K, Hirano Y. 2011. Fine root production and turnover in forest ecosystems in relation to stand and environmental characteristics. For Ecol Manage 262:2008–23.

    Article  Google Scholar 

  • Friedrichs DA, Trouet V, Büntgen U, Frank DC, Esper J, Neuwirth B, Löffler J. 2009. Species-specific climate sensitivity of tree growth in central-west Germany. Trees 23:729–39.

    Article  Google Scholar 

  • García-Suárez AM, Butler CJ, Baillie MGL. 2009. Climate signal in tree-ring chronologies in a temperate climate: a multi-species approach. Dendrochronologia 27:183–98.

    Article  Google Scholar 

  • Geßler A, Keitel C, Kreuzwieser J, Matyssek R, Seiler W, Rennenberg H. 2007. Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees 21:1–11.

    Article  Google Scholar 

  • Gholz HL. 1982. Environmental limits on aboveground net primary production, leaf area, and biomass in vegetation zones of the Pacific Northwest. Ecology 63:469–81.

    Article  Google Scholar 

  • Gough CM, Flower CE, Vogel CS, Dragoni D, Curtis PS. 2009. Whole-ecosystem labile carbon production in a north temperate deciduous forest. Agricult For Meteorol 149:1531–40.

    Article  Google Scholar 

  • Granier A, Reichstein M, Bréda N, Janssens IA, Falge E, Ciais P, Grünwald T, Aubinet M, Berbigier P, Bernhofer C. 2007. Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agricult For Meteorol 143:123–45.

    Article  Google Scholar 

  • Gruber F. 1998. Preformed and neoformed syllepsis and prolepsis of European beech. Flora 193:369–85.

    Google Scholar 

  • Gruber F. 2004. Ist der „Blattverlust “ der Buche nur ein Witterungsphänomen. AFZ Der Wald 59:251–4.

    Google Scholar 

  • Han Q, Kabeya D, Hoch G. 2011. Leaf traits, shoot growth and seed production in mature Fagus sylvatica trees after 8 years of CO2 enrichment. Annal Botany 107:1405–11.

    Article  Google Scholar 

  • Hertel D, Strecker T, Müller-Haubold H, Leuschner C. 2013. Fine root biomass and dynamics in beech forests across a precipitation gradient—is optimal resource partitioning theory applicable to water-limited mature trees? J Ecol. doi:10.1111/1365-2745.12124.

  • Hilton GM, Packham JR. 1997. A sixteen-year record of regional and temporal variation in the fruiting of beech (Fagus sylvatica L.) in England (1980–1995). Forestry 70:7–16.

    Article  Google Scholar 

  • Hoch G, Keel SG. 2006. 13C labelling reveals different contributions of photoassimilates from infructescences for fruiting in two temperate forest tree species. Plant Biol 8:606–14.

    Article  PubMed  CAS  Google Scholar 

  • Hoch G, Richter A, Körner C. 2003. Non-structural carbon compounds in temperate forest trees. Plant, Cell Environ 26:1067–81.

    Article  CAS  Google Scholar 

  • Hoch G. 2005. Fruit-bearing branchlets are carbon autonomous in mature broad-leaved temperate forest trees. Plant, Cell Environ 28:651–9.

    Article  CAS  Google Scholar 

  • Holmsgaard E. 1955. Tree-ring analysis of Danish forest trees (in Danish with English summary). Det Forstlige Forsoegsvaesen i Danmark 22:76–96.

    Google Scholar 

  • Innes JL. 1994. The occurrence of flowering and fruiting on individual trees over 3 years and their effects on subsequent crown condition. Trees 8:139–50.

    Article  Google Scholar 

  • Jochheim H, Einert P, Ende HP, Kallweit R, Lüttschwager D, Schindler U. 2007. Wasser- und Stoffhaushalt eines Buchen-Altbestandes im Nordostdeutschen Tiefland: Ergebnisse einer 4jährigen Messperiode. Archiv für Forstwesen und Landschaftsökologie 41:1–14.

    Google Scholar 

  • Jump AS, Hunt JM, Peñuelas J. 2006. Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Glob Chang Biol 12:2163–74.

    Article  Google Scholar 

  • Kim S. 2012. ppcor: partial and semi-partial (part) correlation. R package version 1.0. http://cran.r-project.org/web/packages/ppcor.

  • Köcher P, Gebauer T, Horna V, Leuschner C. 2009. Leaf water status and stem xylem flux in relation to soil drought in five temperate broad-leaved tree species with contrasting water use strategies. Annal For Sci 66:101–11.

    Article  Google Scholar 

  • Kölling C, Zimmermann L, Walentowski H. 2007. Klimawandel: was geschieht mit Buche und Fichte. AFZ Der Wald 11:584–8.

    Google Scholar 

  • Kozlowski TT, Pallardy SG. 1997. Growth control in woody plants. San Diego: Academic Press.

    Google Scholar 

  • Kozlowski TT. 1992. Carbohydrate sources and sinks in woody plants. Botanical Rev 58:107–222.

    Article  Google Scholar 

  • Krauß HH, Heinsdorf D. 1996. Herleitung von Trockenmassen und Nährstoffspeicherung in Buchenbeständen. Eberswalder Forstliche Schriftenreihe XXXVIII, Eberswalde: Forstliche Forschungsanstalt Eberswalde e. V. Abteilung Standort/Umwelt. 71 p

  • Lacointe A. 2000. Carbon allocation among tree organs: a review of basic processes and representation in functional–structural tree models. Annal For Sci 57:521–33.

    Article  Google Scholar 

  • Lebourgeois F, Bréda N, Ulrich E, Granier A. 2005. Climate–tree–growth relationships of European beech (Fagus sylvatica L.) in the French Permanent Plot Network (RENECOFOR). Trees 19:385–401.

    Article  Google Scholar 

  • Leuschner C, Backes K, Hertel D, Schipka F, Schmitt U, Terborg O, Runge M. 2001. Drought responses at leaf, stem and fine root levels of competitive Fagus sylvatica L. and Quercus petraea (Matt.) Liebl. trees in dry and wet years. For Ecol Manage 149:33–46.

    Article  Google Scholar 

  • Leuschner C, Voß S, Foetzki A, Clases Y. 2006. Variation in leaf area index and stand leaf mass of European beech across gradients of soil acidity and precipitation. Plant Ecol 186:247–58.

    Article  Google Scholar 

  • Leuschner C. 2009. Die Trockenheitsempfindlichkeit der Rotbuche vor dem Hintergrund des prognostizierten Klimawandels. In: Jahrbuch Der Akademie Der Wissenschaften Zu Göttingen. Berlin: Walter de Gruyter. p. 281–96.

  • Leuzinger S, Zotz G, Asshoff R, Körner C. 2005. Responses of deciduous forest trees to severe drought in Central Europe. Tree Physiol 25:641–50.

    Article  PubMed  Google Scholar 

  • Litton CM, Raich JW, Ryan MG. 2007. Carbon allocation in forest ecosystems. Glob Chang Biol 13:2089–109.

    Article  Google Scholar 

  • Matthews JD. 1955. The influence of weather on the frequency of beech mast years in England. Forestry 28:107–16.

    Article  Google Scholar 

  • Meier IC, Leuschner C. 2008a. Leaf size and leaf area index in Fagus sylvatica forests: competing effects of precipitation, temperature, and nitrogen availability. Ecosystems 11:655–69.

    Article  CAS  Google Scholar 

  • Meier IC, Leuschner C. 2008b. Belowground drought response of European beech: fine root biomass and carbon partitioning in 14 mature stands across a precipitation gradient. Glob Chang Biol 14:2081–95.

    Article  Google Scholar 

  • Mitscherlich G. 1975. Wald, Wachstum und Umwelt. 3. Band. Boden, Luft und Produktion. Frankfurt/M: Sauerländer’s Verlag. 352 p.

  • Mölder I, Leuschner C, Leuschner HH. 2011. δ13C signature of tree rings and radial increment of Fagus sylvatica trees as dependent on tree neighborhood and climate. Trees 25:215–29.

    Article  Google Scholar 

  • Moseley C, Panferov O, Döring C, Dietrich J, Haberlandt U, Ebermann V, Rechid D, Beese F, Jacob D. 2012. Klimaentwicklung und Klimaszenarien. Regierungskommission Klimaschutz, Eds. Empfehlung für eine niedersächsische Strategie zur Anpassung an die Folgen des Klimawandels. Hannover: Niedersächsisches Ministerium für Umwelt, Energie und Klimaschutz. p 18–41.

  • Mund M, Kutsch WL, Wirth C, Kahl T, Knohl A, Skomarkova MV, Schulze ED. 2010. The influence of climate and fructification on the inter-annual variability of stem growth and net primary productivity in an old-growth, mixed beech forest. Tree Physiol 30:689–704.

    Article  PubMed  CAS  Google Scholar 

  • Nagel, J. 1999. Konzeptionelle Überlegungen zum schrittweisen Aufbau eines wald-wachstumskundlichen Simulationssystems für Nordwestdeutschland. Schriften aus der Forstlichen Fakultät der Universität Göttingen und der Niedersächsischen Forstlichen Versuchsanstalt 128. Frankfurt/M.: Sauerländer’s Verlag. 122 p.

  • Obeso JR. 2002. The costs of reproduction in plants. New Phytol 155:321–48.

    Article  Google Scholar 

  • Oliver CD, Larson BC. 1996. Forest stand dynamics. New York: Wiley. p 544 p.

    Google Scholar 

  • Övergaard R, Gemmel P, Karlsson M. 2007. Effects of weather conditions on mast year frequency in beech (Fagus sylvatica L.) in Sweden. Forestry 80:555–65.

    Article  Google Scholar 

  • Paar U, Kirchhoff A, Westphal J, Eichhorn J. 2000. Fruktifikation der Buche in Hessen. AFZ Der Wald 55:1362–3.

    Google Scholar 

  • Paar U, Kuhr M, Rockel A, Westphal J, Eichhorn J. 2004. Die Fruktifikation der Buche. Forschungsberichte Hessen-Forst 31:29–37.

    Google Scholar 

  • Piovesan G, Adams JM. 2001. Masting behaviour in beech: linking reproduction and climatic variation. Can J Botany 79:1039–47.

    Article  Google Scholar 

  • Piovesan G, Bernabei M, Di Filippo A, Romagnoli M, Schirone B. 2003. A long-term tree ring beech chronology from a high-elevation old-growth forest of Central Italy. Dendrochronologia 21:13–22.

    Article  Google Scholar 

  • Reekie EG, Bazzaz FA. 1987a. Reproductive effort in plants. 1. Carbon allocation to reproduction. Am Nat 129:876–96.

    Article  Google Scholar 

  • Reekie EG, Bazzaz FA. 1987b. Reproductive effort in plants. 3. Effect of reproduction on vegetative activity. Am Nat 129:907–19.

    Article  Google Scholar 

  • Rennenberg H, Seiler W, Matyssek R, Gessler A, Kreuzwieser J. 2004. Die Buche (Fagus sylvatica L.): ein Waldbaum ohne Zukunft im südlichen Mitteleuropa? Allgemeine Forst Jagdzeitung 175:210–24.

    Google Scholar 

  • Roloff A, Grundmann B. 2008. Klimawandel und Baumarten-Verwendung für Waldökosysteme. Dresden: Techn. University of Dresden. p 46 p.

    Google Scholar 

  • Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C. 2004. The role of increasing temperature variability in European summer heatwaves. Nature 427:332–6.

    Article  PubMed  Google Scholar 

  • Scharnweber T, Manthey M, Criegee C, Bauwe A, Schröder C, Wilmking M. 2011. Drought matters: declining precipitation influences growth of Fagus sylvatica L. and Quercus robur L. in north-eastern Germany. Forest Ecol Manage 262:947–61.

    Article  Google Scholar 

  • Schmidt W. 2006. Zeitliche Veränderung der Fruktifikation bei der Rotbuche (Fagus sylvatica L.) in einem Kalkbuchenwald (1981–2004). Allgemeine Forst und Jagdzeitung 177:9–19.

    Google Scholar 

  • Seidling W. 2007. Signals of summer drought in crown condition data from the German level I network. Eur J For Res 126:529–44.

    Article  Google Scholar 

  • Silpi U, Lacointe A, Kasempsap P, Thanysawanyangkura S, Chantuma P, Gohet E, Musigamart N, Clément A, Améglio T, Thaler P. 2007. Carbohydrate reserves as a competing sink: evidence from tapping rubber trees. Tree Physiol 27:881–9.

    Article  PubMed  CAS  Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL. 2007. IPCC Climate Change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. New York: Cambridge University Press.

    Google Scholar 

  • Vanninen P, Mäkelä A. 2000. Needle and stem wood production in Scots pine (Pinus sylvestris) trees of different age, size and competitive status. Tree Physiol 20:527–33.

    Article  PubMed  Google Scholar 

  • Waring RH, Schlesinger WH. 1985. Forest ecosystems. Concepts and management. Orlando, FL: Academic Press. 340 p.

  • Weber P, Bugmann H, Pluess AR, Walthert L, Rigling A. 2013. Drought response and changing mean sensitivity of European beech close to the dry distribution limit. Trees 27:171–81.

    Article  Google Scholar 

  • Wilson JB. 1988. A review of evidence on the control of shoot: root ratio, in relation to models. Annal Botany 61:433–49.

    Google Scholar 

  • Wutzler T, Wirth C, Schumacher J. 2008. Generic biomass functions for Common beech (Fagus sylvatica) in Central Europe: predictions and components of uncertainty. Can J For Res 38:1661–75.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Claus Döring and Dr. Martin Jansen for their strong support and for providing data on the meteorological and edaphic characteristics of the study plots. Special thanks also go to Dr. Yann Clough for his suggestions on improving the statistical analysis and to Dr. Oliver van Straaten for polishing the English. We would like to thank two anonymous reviewers for their constructive comments on an early version of this paper. We are indebted to Dr. Heinz Coners for his valuable technical support. This study is part of the research program ‘Climate Impact and Adaptation Research in Lower Saxony (KLIFF)’. Financial support granted by the Ministry of Science and Culture of Lower Saxony is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilmar Müller-Haubold.

Additional information

Author Contributions

Conceived of or designed study (CL, DH), Performed research (HMH, FK), Analyzed data (HMH), Contributed new methods or models (DS), Wrote the paper (HMH, CL).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 298 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller-Haubold, H., Hertel, D., Seidel, D. et al. Climate Responses of Aboveground Productivity and Allocation in Fagus sylvatica: A Transect Study in Mature Forests. Ecosystems 16, 1498–1516 (2013). https://doi.org/10.1007/s10021-013-9698-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-013-9698-4

Keywords

Navigation