Skip to main content

Advertisement

Log in

Patterns of Below- and Aboveground Biomass in Eucalyptus populnea Woodland Communities of Northeast Australia along a Rainfall Gradient

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

In vegetated terrestrial ecosystems, carbon in below- and aboveground biomass (BGB, AGB) often constitutes a significant component of total-ecosystem carbon stock. Because carbon in the BGB is difficult to measure, it is often estimated using BGB to AGB ratios. However, this ratio can change markedly along resource gradients, such as water availability, which can lead to substantial errors in BGB estimates. In this study, BGB and AGB sampling was carried out in Eucalyptus populnea-dominated woodland communities of northeast Australia to examine patterns of BGB to AGB ratio and vertical root distribution at three sites along a rainfall gradient (367, 602, and 1,101 mm). At each site, a vegetation inventory was undertaken on five transects (100 × 4 m), and trees representing the E. populnea vegetation structure were harvested and excavated to measure aboveground and coarse-root (diameter of at least 15 mm) biomass. Biomass of fine and small roots (diameter less than 15 mm) at each site was estimated from 40 cores sampled to 1 m depth. The BGB to AGB ratio of E. populnea-dominated woodland plant communities declined from 0.58 at the xeric end to 0.36 at the mesic end of the rainfall gradient. This was due to a marked decline in AGB with increased aridity whereas the BGB was relatively stable. The vertical distribution of fine roots in the top 1 m of soil varied along the rainfall gradient. The mesic sites had more fine-root biomass (FRB) in the upper soil profile and less at depth than the xeric site. Accordingly, at the xeric site, a much larger proportion of FRB was found at depth compared to the mesic sites. The vertical distribution patterns of small roots of the E. populnea woodland plant communities were consistently )-shaped, with the highest biomass occurring at 15–30-cm depth. The potential significance of such a rooting pattern for grass–tree and shrub–tree co-existence in these ecosystems is discussed. Overall, our results revealed marked changes in BGB to AGB ratio of E. populnea woodland communities along a rainfall gradient. Because E. populnea woodlands cover a large area (96 M ha), their contribution to continental-scale carbon sequestration and greenhouse gas emission can be substantial. Use of the rainfall-zone-specific ratios found in this study, in lieu of a single generic ratio for the entire region, will significantly improve estimates of BGB carbon stocks in these woodlands. In the absence of more specific data, our results will also be relevant in other regions with similar vegetation and rainfall gradients (that is, arid and semiarid woodland ecosystems).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Back PV, Anderson ER, Burrows WH, Kennedy MJJ, Carter JO. 1997. ‘TRAPS’ transect recording and processing system: woodland monitoring manual. Rockhampton: Queensland Department of Primary Industries. p. 36

  • Beeston GR, Walker PJ, Purdie R, Pickard J. 1980. Plant communities of the popular box (Eucalyptus populnea) lands of eastern Australia. Aust Rangeland J 2:1–16

    Article  Google Scholar 

  • Bloom AJ, Chapin FS III, Mooney HA. 1985. Resource limitation in plants—an economic analogy. Annu Rev Ecol Syst 16:363–92

    Google Scholar 

  • Burrows WH, Hoffmann MB, Compton JF, Back PV, Tait LJ. 2000. Allometric relationships and community biomass estimates for some dominant eucalypts in Central Queensland woodlands. Aust J Bot 48:707–714

    Article  Google Scholar 

  • Burrows WH, Henry BK, Back PV, Hoffmann MB, Tait LJ, Anderson ER, Menke N, others. 2002. Growth and carbon stock change in eucalypt woodlands in northeast Australia: ecological and greenhouse sink implications. Glob Change Biol 8:769–84

    Article  Google Scholar 

  • Cairns MA, Brown S, Helmer E, Baumgardner GA. 1997. Root biomass allocation in the world’s upland forests. Oecologia 111:1–11

    Article  Google Scholar 

  • Casper BB, Schenk HJ, Jackson RB. 2003. Defining a plant’s belowground zone of influence. Ecology 84:2313–21

    Google Scholar 

  • Chapin FS III, Autumn K, Pugnaire F. 1993. Evolution of suites of traits in response to environmental stress. Am Nat 142:S78–S92

    Article  Google Scholar 

  • Comeau PG, Kimmins JP. 1989. Above- and below-ground biomass and production of ledgepole pine on sites with differing moisture regimes. Canad J For Res 19:447–54

    Google Scholar 

  • Compton JF, Tait LJ, Hoffmann MB, Myles DJ. 1999. Root–shoot ratios and root distribution for woodland communities across a rainfall gradient in central Queensland. In: Eldridge D, Freudenberger D, Eds. People and rangelands: building the future. Proceedings of the VIth international rangeland Congress. Canberra: Australian Academy of Sciences. p. 924–5

    Google Scholar 

  • Eamus D, Chen X, Kelley G, Hutley LB. 2002. Root biomass and root fractal analyses of an open Eucalyptus forest in a savanna of north Australia. Aust J Bot 50:31–41

    Article  Google Scholar 

  • Friedlingstein P, Joel G, Field CB, Fung IY. 1999. Toward an allocation scheme for global terrestrial carbon models. Glob Change Biol 5:755–70

    Article  Google Scholar 

  • Greene RSB, Chartres CJ, Hodgkinson KS. 1990. The effects of fire on the soil in a degraded semi-arid woodland. I. Cryptogam cover and physical and micromorphological properties. Aust J Soil Res 28:755–77

    Article  Google Scholar 

  • Harrington GN. 1979. Estimation of above-ground biomass of trees and shrubs in a Eucalyptus populnea F. Muell. woodland by regression of mass on trunk diameter and plant height. Aust J Bot 27:135–43

    Article  Google Scholar 

  • Hodgki nson KC. 1992. Water relations and growth of shrubs before and after fire in a semi-arid woodland. Oecologia 90:467–73

    Article  Google Scholar 

  • Jeffrey SJ, Carter JO, Moodie KM, Beswick AR. 2001. Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environ Model Softw 16:309–30

    Article  Google Scholar 

  • Johns GG. 1984. Soil water storage in a semi-arid Eucalyptus populnea woodland invaded by shrubs, and the effects of shrub clearing and tree ring barking. Austr Rangeland J 6:75–85

    Article  Google Scholar 

  • Knoop WT, Walker BH. 1985. Interactions of woody and herbaceous vegetation in a southern African savanna. J Ecol 73:235–53

    Google Scholar 

  • Lawson GW, Jenik J, Armstrong-Mensah KO. 1968. A study of a vegetation catena in Guinea savanna at Mole game reserve (Ghana). J Ecol 56:505–522

    Google Scholar 

  • MacFall JS, Johnson GA, Kramer PJ. 1991. Comparative water uptake by roots of different ages in seedlings of loblolly pine (Pinus teada L.). New Phytol 119:551–560

    Article  Google Scholar 

  • McPherson GR, Boutton TW, Midwood AJ. 1993. Stable carbon isotope analysis of soil organic matter illustrates vegetation change at the grassland/woodland boundary in southern Arizona, USA. Oecologia 93:95–101

    Google Scholar 

  • Northcote KH. 1979. A factual key for the recognition of Australian soils. 4th ed. Glenside, (South Australia): Rellim Technical Publications. 123 p

    Google Scholar 

  • Santantonio D, Hermann RK. 1985. Standing crop, production, and turnover of fine roots on dry, moderate, and wet sites of mature Douglas fir in western Oregon. Ann Sci For 42:113–42

    Google Scholar 

  • Schenk HJ, Jackson RB. 2002a. The global biogeography of roots. Ecol Monogr 72:311–328

    Google Scholar 

  • Schenk HJ, Jackson RB. 2002b. Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J Ecol 90:480–494

    Article  Google Scholar 

  • Scholes RJ, Archer SR. 1997. Tree-grass interactions in savannas. Annual Rev Ecol Syst 28:517–44

    Article  Google Scholar 

  • Schulze E-D, Mooney HA, Sala OE, Jobbagy E, Buchmann N, Bauer G, Canadell J, others. 1996. Rooting depth, water availability, and vegetation cover along an aridity gradient in Patagonia. Oecologia 108:503–511

    Article  Google Scholar 

  • Schulze E-D, Williams RJ, Farquhar GD, Schulze W, Langridge J, Miller JM, Walker BH. 1998. Carbon and nitrogen isotope discrimination and nitrogen nutrition of trees along a rainfall gradient in northern Australia. Aust J Plant Physiol 25:413–25

    Article  Google Scholar 

  • Schuur EAG, Matson PA. 2001. Net primary productivity and nutrient cycling across a mesic to wet precipitation gradient in Hawaiian montane forest. Oecologia 128:431–42

    Article  Google Scholar 

  • Steudle E, Peterson CA. 1998. How does water get through roots? J Exp Bot 49:775–88

    Article  CAS  Google Scholar 

  • van Auken OW. 2000. Shrub invasions of North American semiarid grasslands. Annu Rev Ecol Syst 31:197–215

    Article  Google Scholar 

  • Vogt KA, Vogt DJ, Palmiotto PA, Boon P, O’Hara J, Asbjornsen H. 1996. Review of root dynamics in forest systems grouped by climate, climate forest type and species. Plant Soil 187:159–219

    Article  CAS  Google Scholar 

  • Walter H. 1971. Ecology of tropical and subtropical vegetation. Edinburgh: Oliver & Boyd

    Google Scholar 

  • Weston EJ, Thompson DF, Scott BJ. 1980. Current land use in the poplar box (Eucalyptus populnea) lands. Austr Rangeland J 2:31–40

    Article  Google Scholar 

  • Williams RJ, Duff GA, Bowman DMJS, Cook GD. 1996. Variation in the composition of tropical savannas as a function of rainfall and soil texture along a large-scale climatic gradient in the Northern Territory, Australia. J Biogeogr 23:747–56

    Google Scholar 

  • Zerihun A, Montagu KD. 2004. Belowground to aboveground biomass ratio and vertical root distribution responses of mature Pinus radiata D. Don. stands to phosphorus fertilisation at planting. Can J For Res 34:1883–94

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to P. Back, D. Bell, J. Chandler, J. Compton, Dr. C. Dean, K. Düttmer, B. Fisher, D. Giles, D. Myles, S. Wood and M. Yee for their help in field sampling and/or laboratory sample processing. Dr. Annette Cowie provided useful comments on an early version of the manuscript. We also thank Dr. J. H. Schenk and an anonymous reviewer for comments that helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayalsew Zerihun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zerihun, A., Montagu, K.D., Hoffmann, M.B. et al. Patterns of Below- and Aboveground Biomass in Eucalyptus populnea Woodland Communities of Northeast Australia along a Rainfall Gradient. Ecosystems 9, 501–515 (2006). https://doi.org/10.1007/s10021-005-0155-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-005-0155-x

Keywords

Navigation