Skip to main content

Advertisement

Log in

Histopathologic diagnosis of brain metastases: current trends in management and future considerations

Brain Tumor Pathology Aims and scope Submit manuscript

Abstract

Confronted with brain metastases (BM), pathologists aim to rule out a primary central nervous system (CNS) tumor and to identify or verify the primary tumor site to guide the clinician to specific therapies. Apart from morphological features, ancillary immunohistochemical analysis is the most effective tool for characterizing a metastatic neoplasm of unknown origin. A limited array of antibodies is used, taking into account relevant clinical information and the known brain tropism of lung cancer, breast cancer and melanoma. Recently, targeted therapies have enriched the therapeutic arsenal, in particular for patients with non-small cell lung cancer or melanoma and for patients carrying molecular anomalies. These therapies can lead to a substantial tumor response, brain metastases included, which justifies rapid determination of a molecular profile. To combine different tools and provide timely results, good tumor sample management and careful attention at the pre-analytical phase are critical. Appropriate strategies for molecular and immunohistochemical analysis are needed to identify theranostic markers. This article aims to review the anatomopathological diagnostic approach for BM in the age of targeted therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Drlicek M, Bodenteich A, Urbanits S, Grisold W (2004) Immunohistochemical panel of antibodies in the diagnosis of brain metastases of the unknown primary. Pathol Res Pract 200(10):727–734

    Article  PubMed  Google Scholar 

  2. Lesimple T, Voigt JJ, Bataillard A, Coindre JM, Culine S, Lortholary A et al (2003) Clinical practice guidelines: standards, options and recommendations for the diagnosis of carcinomas of unknown primary site. Bull Cancer Paris 90(12):1071–1096

    PubMed  Google Scholar 

  3. Becher MW, Abel TW, Thompson RC, Weaver KD, Davis LE (2006) Immunohistochemical analysis of metastatic neoplasms of the central nervous system. J Neuropathol Exp Neurol 65(10):935–944

    Article  CAS  PubMed  Google Scholar 

  4. Patchell RA, Tibbs PA, Walsh JW, Dempsey RJ, Maruyama Y, Kryscio RJ et al (1990) A randomized trial of surgery in the treatment of single metastases to the brain. N Engl J Med 322(8):494–500

    Article  CAS  PubMed  Google Scholar 

  5. Pekmezci M, Perry A (2013) Neuropathology of brain metastases. Surg Neurol Int 4(Suppl 4):245–255

    Google Scholar 

  6. Ordóñez NG (2014) Value of melanocytic-associated immunohistochemical markers in the diagnosis of malignant melanoma: a review and update. Hum Pathol 45(2):191–205

    Article  PubMed  CAS  Google Scholar 

  7. Chu PG, Weiss LM (2002) Keratin expression in human tissues and neoplasms. Histopathology 40(5):403–439

    Article  CAS  PubMed  Google Scholar 

  8. Gianella-Borradori A, Zeltzer PM, Bodey B, Nelson M, Britton H, Marlin A (1992) Choroid plexus tumors in childhood. Response to chemotherapy, and immunophenotypic profile using a panel of monoclonal antibodies. Cancer 69(3):809–816

    Article  CAS  PubMed  Google Scholar 

  9. Preusser M, Capper D, Ilhan-Mutlu A, Berghoff AS, Birner P, Bartsch R et al (2012) Brain metastases: pathobiology and emerging targeted therapies. Acta Neuropathol 123(2):205–222

    Article  CAS  PubMed  Google Scholar 

  10. Jin J, Zhou X, Liang X, Huang R, Chu Z, Jiang J et al (2013) Brain metastases as the first symptom of lung cancer: a clinical study from an Asian medical center. J Cancer Res Clin Oncol 139(3):403–408

    Article  PubMed  Google Scholar 

  11. Kim MY, Go H, Koh J, Lee K, Min HS, Kim MA et al (2014) Napsin A is a useful marker for metastatic adenocarcinomas of pulmonary origin. Histopathology 65(2):195–206

    Article  PubMed  Google Scholar 

  12. Kawaguchi KR, Lu FI, Kaplan R, Liu YF, Chadwick P, Chen Z et al (2014) In search of the ideal immunopanel to distinguish metastatic mammary carcinoma from primary lung carcinoma: a tissue microarray study of 207 cases. Appl Immunohistochem Mol Morphol 22(4):266–274

    Article  CAS  PubMed  Google Scholar 

  13. Amir E, Clemons M, Purdie CA, Miller N, Quinlan P, Geddie W et al (2012) Tissue confirmation of disease recurrence in breast cancer patients: pooled analysis of multi-centre, multi-disciplinary prospective studies. Cancer Treat Rev 38(6):708–714

    Article  PubMed  Google Scholar 

  14. Reis-Filho JS, Tutt ANJ (2008) Triple negative tumours: a critical review. Histopathology 52(1):108–118

    Article  CAS  PubMed  Google Scholar 

  15. Travis WD, Brambilla E, Noguchi M, Nicholson AG, Geisinger K, Yatabe Y et al (2011) International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society: international multidisciplinary classification of lung adenocarcinoma: executive summary. Proc Am Thorac Soc 8(5):381–385

    Article  PubMed  Google Scholar 

  16. Agazzi S, Pampallona S, Pica A, Vernet O, Regli L, Porchet F et al (2004) The origin of brain metastases in patients with an undiagnosed primary tumour. Acta Neurochir 146:153–157

    Article  CAS  PubMed  Google Scholar 

  17. Burel-Vandenbos F, Ambrosetti D, Coutts M, Pedeutour F (2013) EGFR mutation status in brain metastases of non-small cell lung carcinoma. J Neurooncol 111(1):1–10

    Article  CAS  PubMed  Google Scholar 

  18. Jackman DM, Holmes AJ, Lindeman N, Wen PY, Kesari S, Borras AM et al (2006) Response and resistance in a non-small-cell lung cancer patient with an epidermal growth factor receptor mutation and leptomeningeal metastases treated with high-dose gefitinib. J Clin Oncol 24(27):4517–4520

    Article  PubMed  Google Scholar 

  19. Clarke JL, Pao W, Wu N, Miller VA, Lassman AB (2010) High dose weekly erlotinib achieves therapeutic concentrations in CSF and is effective in leptomeningeal metastases from epidermal growth factor receptor mutant lung cancer. J Neurooncol 99(2):283–286

    Article  PubMed  PubMed Central  Google Scholar 

  20. Koivunen JP, Mermel C, Zejnullahu K, Murphy C, Lifshits E, Holmes AJ et al (2008) EML4-ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer. Clin Cancer Res 14(13):4275–4283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shaw AT, Yeap BY, Mino-Kenudson M, Digumarthy SR, Costa DB, Heist RS et al (2009) Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J Clin Oncol 27(26):4247–4253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wong DWS, Leung ELH, So KKT, Tam IYS, Sihoe ADL, Cheng LC et al (2009) The EML4-ALK fusion gene is involved in various histologic types of lung cancers from nonsmokers with wild-type EGFR and KRAS. Cancer 115(8):1723–1733

    Article  CAS  PubMed  Google Scholar 

  23. Takahashi T, Sonobe M, Kobayashi M, Yoshizawa A, Menju T, Nakayama E et al (2010) Clinicopathologic features of non-small-cell lung cancer with EML4-ALK fusion gene. Ann Surg Oncol 17(3):889–897

    Article  PubMed  Google Scholar 

  24. Camidge DR, Kono SA, Flacco A, Tan AC, Doebele RC, Zhou Q et al (2010) Optimizing the detection of lung cancer patients harboring anaplastic lymphoma kinase (ALK) gene rearrangements potentially suitable for ALK inhibitor treatment. Clin Cancer Res 16(22):5581–5590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bergethon K, Shaw AT, Ou SHI, Katayama R, Lovly CM, McDonald NT et al (2012) ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol 30(8):863–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ou SHI, Kwak EL, Siwak-Tapp C, Dy J, Bergethon K, Clark JW et al (2011) Activity of crizotinib (PF02341066), a dual mesenchymal-epithelial transition (MET) and anaplastic lymphoma kinase (ALK) inhibitor, in a non-small cell lung cancer patient with de novo MET amplification. J Thorac Oncol 6(5):942–946

    Article  PubMed  Google Scholar 

  27. Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG et al (2010) Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med 363(18):1693–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Costa DB, Kobayashi S, Pandya SS, Yeo WL, Shen Z, Tan W et al (2011) CSF concentration of the anaplastic lymphoma kinase inhibitor crizotinib. J Clin Oncol 29(15):443–445

    Article  Google Scholar 

  29. Weickhardt AJ, Scheier B, Burke JM, Gan G, Lu X, Bunn PA et al (2012) Local ablative therapy of oligoprogressive disease prolongs disease control by tyrosine kinase inhibitors in oncogene-addicted non-small-cell lung cancer. J Thorac Oncol 7(12):1807–1814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Costa DB, Shaw AT, Ou SHI, Solomon BJ, Riely GJ, Ahn MJ et al (2015) Clinical experience with Crizotinib in patients with advanced ALK-rearranged non-small-cell lung cancer and brain metastases. J Clin Oncol 33(17):1881–1888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Choi YL, Soda M, Yamashita Y, Ueno T, Takashima J, Nakajima T et al (2010) EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N Engl J Med 363(18):1734–1739

    Article  CAS  PubMed  Google Scholar 

  32. Takeuchi K, Soda M, Togashi Y, Suzuki R, Sakata S, Hatano S et al (2012) RET, ROS1 and ALK fusions in lung cancer. Nat Med 18(3):378–381

    Article  CAS  PubMed  Google Scholar 

  33. Puig de la Bellacasa R, Karachaliou N, Estrada-Tejedor R, Teixidó J, Costa C, Borrell JI (2013) ALK and ROS1 as a joint target for the treatment of lung cancer: a review. Transl Lung Cancer Res 2(2):72–86

    PubMed  PubMed Central  Google Scholar 

  34. Bang YJ, Ou SHI, Camidge DR, Clark JW, Wilner KD, Tye L et al (2012) Clinical activity of crizotinib in advanced non-small cell lung cancer (NSCLC) harboring ROS1 gene rearrangement. J Clin Oncol 30(suppl):abstr 7508

  35. Chin LP, Soo RA, Soong R, Ou SHI (2012) Targeting ROS1 with anaplastic lymphoma kinase inhibitors: a promising therapeutic strategy for a newly defined molecular subset of non-small-cell lung cancer. J Thorac Oncol 7(11):1625–1630

    Article  CAS  PubMed  Google Scholar 

  36. Ye M, Zhang X, Li N, Zhang Y, Jing P, Chang N et al (2016) ALK and ROS1 as targeted therapy paradigms and clinical implications to overcome crizotinib resistance. Oncotarget 7(11):12289–12304

    PubMed  PubMed Central  Google Scholar 

  37. Preusser M, Streubel B, Birner P (2014) ROS1 translocations and amplifications in lung cancer brain metastases. J Neurooncol 118(2):425–426

    Article  PubMed  Google Scholar 

  38. Awad MM, Engelman JA, Shaw AT (2013) Acquired resistance to crizotinib from a mutation in CD74-ROS1. N Engl J Med 369(12):1173

    Article  CAS  PubMed  Google Scholar 

  39. Sun H, Li Y, Tian S, Wang J, Hou T (2014) P-loop conformation governed crizotinib resistance in G2032R-mutated ROS1 tyrosine kinase: clues from free energy landscape. PLoS Comput Biol 10(7):e1003729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Davies KD, Mahale S, Astling DP, Aisner DL, Le AT, Hinz TK et al (2013) Resistance to ROS1 inhibition mediated by EGFR pathway activation in non-small cell lung cancer. PLoS One 8(12):e82236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Katayama R, Shaw AT, Khan TM, Mino-Kenudson M, Solomon BJ, Halmos B et al (2012) Mechanisms of acquired crizotinib resistance in ALK-rearranged lung Cancers. Sci Transl Med 4(120):120ra17

  42. Cargnelutti M, Corso S, Pergolizzi M, Mévellec L, Aisner DL, Dziadziuszko R et al (2015) Activation of RAS family members confers resistance to ROS1 targeting drugs. Oncotarget 6(7):5182–5194

    Article  PubMed  Google Scholar 

  43. Takeuchi K, Soda M, Togashi Y, Suzuki R, Sakata S, Hatano S et al (2012) RET, ROS1 and ALK fusions in lung cancer. Nat Med 18(3):378–381

    Article  CAS  PubMed  Google Scholar 

  44. Gautschi O, Zander T, Keller FA, Strobel K, Hirschmann A, Aebi S et al (2013) A patient with lung adenocarcinoma and RET fusion treated with vandetanib. J Thorac Oncol 8(5):e43

    Article  PubMed  Google Scholar 

  45. Drilon A, Wang L, Hasanovic A, Suehara Y, Lipson D, Stephens P et al (2013) Response to Cabozantinib in patients with RET fusion-positive lung adenocarcinomas. Cancer Discov 3(6):630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Falchook GS, Ordóñez NG, Bastida CC, Stephens PJ, Miller VA, Gaido L et al (2016) Effect of the RET inhibitor vandetanib in a patient with RET fusion-positive metastatic non-small-cell lung cancer. J Clin Oncol 34(15):e141

    Article  CAS  PubMed  Google Scholar 

  47. Bean J, Brennan C, Shih JY, Riely G, Viale A, Wang L et al (2007) MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci U S A 104(52):20932–20937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Onozato R, Kosaka T, Kuwano H, Sekido Y, Yatabe Y, Mitsudomi T (2009) Activation of MET by gene amplification or by splice mutations deleting the juxtamembrane domain in primary resected lung cancers. J Thorac Oncol 4(1):5–11

    Article  PubMed  Google Scholar 

  49. Kong-Beltram M, Seshagiri S, Zha J, Zhu W, Bhawe K, Mendoza N et al (2006) Somatic mutations lead to an oncogenic deletion of met in lung cancer. Cancer Res 1;66(1):283–289

  50. Scagliotti G, von Pawel J, Novello S, Ramlau R, Favaretto A, Barlesi F et al (2015) Phase III multinational, randomized, double-blind, placebo-controlled study of tivantinib (ARQ 197) plus erlotinib versus erlotinib alone in previously treated patients with locally advanced or metastatic nonsquamous non-small-cell lung cancer. J Clin Oncol 33(24):2667–2674

    Article  CAS  PubMed  Google Scholar 

  51. Ou SH, Kwak EL, Siwak-Tapp C, Dy J, Bergethon K, Clark JW et al (2011) Activity of crizotinib (PF02341066), a dual mesenchymal-epithelial transition (MET) and anaplastic lymphoma kinase (ALK) inhibitor, in a non-small cell lung cancer patient with de novo MET amplification. J Thorac Oncol 6(5):942–946

    Article  PubMed  Google Scholar 

  52. Dutt A, Ramos AH, Hammerman PS, Mermel C, Cho J, Sharifnia T et al (2011) Inhibitor-sensitive FGFR1 amplification in human non-small cell lung cancer. PLoS One 6(6):e20351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Weiss J, Sos ML, Seidel D, Peifer M, Zander T, Heuckmann JM et al (2010) Frequent and focal FGFR1 amplification associates with therapeutically tractable FGFR1 dependency in squamous cell lung cancer. Sci Transl Med 2(62):62ra93

  54. Preusser M, Berghoff AS, Berger W, Ilhan-Mutlu A, Dinhof C, Widhalm G et al (2014) High rate of FGFR1 amplifications in brain metastases of squamous and non-squamous lung cancer. Lung Cancer Amst Neth 83(1):83–89

    Article  Google Scholar 

  55. Hammerman PS, Sos ML, Ramos AH, Xu C, Dutt A, Zhou W et al (2011) Mutations in the DDR2 kinase gene identify a novel therapeutic target in squamous cell lung cancer. Cancer Discov 1(1):78–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Payne LS, Huang PH (2014) Discoidin domain receptor 2 signaling networks and therapy in lung cancer. J Thorac Oncol 9(6):900–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Capper D, Berghoff AS, Magerle M, Ilhan A, Wöhrer A, Hackl M et al (2012) Immunohistochemical testing of BRAF V600E status in 1120 tumor tissue samples of patients with brain metastases. Acta Neuropathol 123(2):223–233

    Article  CAS  PubMed  Google Scholar 

  58. Flaherty KT, Hodi FS, Fisher DE (2012) From genes to drugs: targeted strategies for melanoma. Nat Rev Cancer 12(5):349–361

    Article  CAS  PubMed  Google Scholar 

  59. Berghoff AS, Preusser M (2014) BRAF alterations in brain tumours: molecular pathology and therapeutic opportunities. Curr Opin Neurol 27(6):689–696

    Article  CAS  PubMed  Google Scholar 

  60. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364(26):2507–2516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ascierto PA, Minor D, Ribas A, Lebbe C, O’Hagan A, Arya N et al (2013) Phase II trial (BREAK-2) of the BRAF inhibitor dabrafenib (GSK2118436) in patients with metastatic melanoma. J Clin Oncol 31(26):3205–3211

    Article  CAS  PubMed  Google Scholar 

  62. Tentori L, Lacal PM, Graziani G (2013) Challenging resistance mechanisms to therapies for metastatic melanoma. Trends Pharmacol Sci 34(12):656–666

    Article  CAS  PubMed  Google Scholar 

  63. Trunzer K, Pavlick AC, Schuchter L, Gonzalez R, McArthur GA, Hutson TE et al (2013) Pharmacodynamic effects and mechanisms of resistance to vemurafenib in patients with metastatic melanoma. J Clin Oncol 31(14):1767–1774

    Article  CAS  PubMed  Google Scholar 

  64. Eroglu Z, Ribas A (2016) Combination therapy with BRAF and MEK inhibitors for melanoma: latest evidence and place in therapy. Ther Adv Med Oncol 8(1):48–56

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Beadling C, Jacobson-Dunlop E, Hodi FS, Le C, Warrick A, Patterson J et al (2008) KIT gene mutations and copy number in melanoma subtypes. Clin Cancer Res 14(21):6821–6828

    Article  CAS  PubMed  Google Scholar 

  66. Hodi FS, Friedlander P, Corless CL, Heinrich MC, Mac Rae S, Kruse A et al (2008) Major response to imatinib mesylate in KIT-mutated melanoma. J Clin Oncol 26(12):2046–2051

    Article  CAS  PubMed  Google Scholar 

  67. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235(4785):177–182

    Article  CAS  PubMed  Google Scholar 

  68. Gabos Z, Sinha R, Hanson J, Chauhan N, Hugh J, Mackey JR et al (2006) Prognostic significance of human epidermal growth factor receptor positivity for the development of brain metastasis after newly diagnosed breast cancer. J Clin Oncol 24(36):5658–5663

    Article  CAS  PubMed  Google Scholar 

  69. Tham YL, Sexton K, Kramer R, Hilsenbeck S, Elledge R (2006) Primary breast cancer phenotypes associated with propensity for central nervous system metastases. Cancer 107(4):696–704

    Article  PubMed  Google Scholar 

  70. Brufsky AM, Mayer M, Rugo HS, Kaufman PA, Tan-Chiu E, Tripathy D et al (2011) Central nervous system metastases in patients with HER2-positive metastatic breast cancer: incidence, treatment, and survival in patients from registHER. Clin Cancer Res 17(14):4834–4843

    Article  CAS  PubMed  Google Scholar 

  71. Dawood S, Broglio K, Esteva FJ, Ibrahim NK, Kau SW, Islam R et al (2008) Defining prognosis for women with breast cancer and CNS metastases by HER2 status. Ann Oncol 19(7):1242–1248

    Article  CAS  PubMed  Google Scholar 

  72. Pestalozzi BC, Brignoli S (2000) Trastuzumab in CSF. J Clin Oncol 18(11):2349–2351

    Article  CAS  PubMed  Google Scholar 

  73. Stemmler HJ, Heinemann V (2008) Central nervous system metastases in HER-2-overexpressing metastatic breast cancer: a treatment challenge. Oncologist 13(7):739–750

    Article  PubMed  Google Scholar 

  74. Baselga J, Cortés J, Kim SB, Im SA, Hegg R, Im YH et al (2012) Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med 366(2):109–119

    Article  CAS  PubMed  Google Scholar 

  75. Swain SM, Kim SB, Cortés J, Ro J, Semiglazov V, Campone M et al (2013) Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA study): overall survival results from a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol 14(6):461–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Swain SM, Baselga J, Kim SB, Ro J, Semiglazov V, Campone M et al (2015) Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N Engl J Med 372(8):724–734

    Article  CAS  PubMed  Google Scholar 

  77. Swain SM, Baselga J, Miles D, Im YH, Quah C, Lee LF et al (2014) Incidence of central nervous system metastases in patients with HER2-positive metastatic breast cancer treated with pertuzumab, trastuzumab, and docetaxel: results from the randomized phase III study CLEOPATRA. Ann Oncol 25(6):1116–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lin NU, Diéras V, Paul D, Lossignol D, Christodoulou C, Stemmler HJ et al (2009) Multicenter phase II study of lapatinib in patients with brain metastases from HER2-positive breast cancer. Clin Cancer Res 15(4):1452–1459

    Article  CAS  PubMed  Google Scholar 

  79. Cameron D, Casey M, Press M, Lindquist D, Pienkowski T, Romieu CG et al (2008) A phase III randomized comparison of lapatinib plus capecitabine versus capecitabine alone in women with advanced breast cancer that has progressed on trastuzumab: updated efficacy and biomarker analyses. Breast Cancer Res Treat 112(3):533–543

    Article  CAS  PubMed  Google Scholar 

  80. Dahabreh IJ, Terasawa T, Castaldi PJ, Trikalinos TA (2011) Systematic review: anti-epidermal growth factor receptor treatment effect modification by KRAS mutations in advanced colorectal cancer. Ann Intern Med 154(1):37–49

    Article  PubMed  Google Scholar 

  81. Fernández-Medarde A, Santos E (2011) Ras in cancer and developmental diseases. Genes Cancer 2(3):344–358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Benson AB, Venook AP, Bekaii-Saab T, Chan E, Chen YJ, Cooper HS et al (2014) Colon cancer, version 3.2014. J Natl Compr Canc Netw 12(7):1028–1059

    CAS  PubMed  Google Scholar 

  83. Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE (2002) Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature 418(6901):934

    Article  CAS  PubMed  Google Scholar 

  84. Fransén K, Klintenäs M, Osterström A, Dimberg J, Monstein HJ, Söderkvist P (2004) Mutation analysis of the BRAF, ARAF and RAF-1 genes in human colorectal adenocarcinomas. Carcinogenesis 25(4):527–533

    Article  PubMed  CAS  Google Scholar 

  85. Pietrantonio F, Petrelli F, Coinu A, Di Bartolomeo M, Borgonovo K, Maggi C et al (2015) Predictive role of BRAF mutations in patients with advanced colorectal cancer receiving cetuximab and panitumumab: a meta-analysis. Eur J Cancer 51(5):587–594

    Article  CAS  PubMed  Google Scholar 

  86. Tran B, Kopetz S, Tie J, Gibbs P, Jiang ZQ, Lieu CH et al (2011) Impact of BRAF mutation and microsatellite instability on the pattern of metastatic spread and prognosis in metastatic colorectal cancer. Cancer 117(20):4623–4632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Joyce T, Oikonomou E, Kosmidou V, Makrodouli E, Bantounas I, Avlonitis S et al (2012) A molecular signature for oncogenic BRAF in human colon cancer cells is revealed by microarray analysis. Curr Cancer Drug Targets 12(7):873–898

    Article  CAS  PubMed  Google Scholar 

  88. Loupakis F, Cremolini C, Masi G, Lonardi S, Zagonel V, Salvatore L et al (2014) Initial therapy with FOLFOXIRI and bevacizumab for metastatic colorectal cancer. N Engl J Med 371(17):1609–1618

    Article  PubMed  CAS  Google Scholar 

  89. Loupakis F, Cremolini C, Salvatore L, Masi G, Sensi E, Schirripa M et al (2014) FOLFOXIRI plus bevacizumab as first-line treatment in BRAF mutant metastatic colorectal cancer. Eur J Cancer 50(1):57–63

    Article  CAS  PubMed  Google Scholar 

  90. Kopetz S, Desai J, Chan E, Hecht JR, O’Dwyer PJ, Lee RJ et al (2010) PLX4032 in metastatic colorectal cancer patients with mutant BRAF tumors. J Clin Oncol 28(15s):abstr3534

  91. Garon EB, Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP et al (2015) Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 372(21):2018–2028

    Article  PubMed  Google Scholar 

  92. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE et al (2015) Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373(17):1627–1639

    Article  CAS  PubMed  Google Scholar 

  93. Weber JS, D’Angelo SP, Minor D, Hodi FS, Gutzmer R, Neyns B et al (2015) Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol 16(4):375–384

    Article  CAS  PubMed  Google Scholar 

  94. Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S et al (2015) Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med 373(19):1803–1813

    Article  CAS  PubMed  Google Scholar 

  95. McDermott D, Haanen J, Chen TT, Lorigan P, O’Day S, Investigators MDX (2013) Efficacy and safety of ipilimumab in metastatic melanoma patients surviving more than 2 years following treatment in a phase III trial (MDX010-20). Ann Oncol 24(10):2694–2698

    Article  CAS  PubMed  Google Scholar 

  96. Kerr KM, Tsao MS, Nicholson AG, Yatabe Y, Wistuba II, Hirsch FR et al (2015) Programmed death-ligand 1 immunohistochemistry in lung cancer: in what state is this art? J Thorac Oncol 10(7):985–989

    Article  CAS  PubMed  Google Scholar 

  97. Gandini S, Massi D, Mandala M (2016) PD-L1 expression in cancer patients receiving anti PD-1/PD-L1 antibodies: a systematic review and meta-analysis. Crit Rev Oncol Hematol 100:88–98

    Article  PubMed  Google Scholar 

  98. Galea I, Bechmann I, Perry VH (2007) What is immune privilege (not)? Trends Immunol 28:12–18

    Article  CAS  PubMed  Google Scholar 

  99. Cohen JV, Kluger HM (2016) Systemic immunotherapy for the treatment of brain metastases. Front Oncol 6:49

    Article  PubMed  PubMed Central  Google Scholar 

  100. Berghoff AS, Venur VA, Preusser M, Ahluwalia MS (2016) Immune checkpoint inhibitors in brain metastases: from biology to treatment. Am Soc Clin Oncol Educ Book 35:e116–e122

    Article  PubMed  Google Scholar 

  101. Berghoff AS, Fuchs E, Ricken G, Mlecnik B, Bindea G, Thomas Spanberger T et al (2016) Density of tumor-infiltrating lymphocytes correlates with extent of brain edema and overall survival time in patients with brain metastases. Oncoimmunology 5(1):e1057388

    Article  PubMed  CAS  Google Scholar 

  102. Berghoff AS, Lassmann H, Preusser M, Höftberger R (2013) Characterization of the inflammatory response to solid cancer metastases in the human brain. Clin Exp Metastasis 30:69–81

    Article  CAS  PubMed  Google Scholar 

  103. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960–1964

    Article  CAS  PubMed  Google Scholar 

  104. Galon J, Pages F, Marincola FM, Angell HK, Thurin M, Lugli A et al (2012) Cancer classification using the Immunoscore: a worldwide task force. J Trans Med 10:205

    Article  Google Scholar 

  105. Galon J, Pages F, Marincola FM, Thurin M, Trinchieri G, Fox BA et al (2012) The immune score as a new possible approach for the classification of cancer. J Trans Med 10:1

    Article  Google Scholar 

  106. Mlecnik B, Tosolini M, Kirilovsky A, Berger A, Bindea G, Meatchi T et al (2011) Histopathologic-based prognostic factors of colorectal cancers are associated with the state of the local immune reaction. J Clin Oncol Off J Am Soc Clin Oncol 29:610–618

    Article  Google Scholar 

  107. Shao D, Lin Y, Liu J, Wan L, Liu Z, Cheng S et al (2014) A targeted next-generation sequencing method for identifying clinically relevant mutation profiles in lung adenocarcinoma. Sci Rep 3:6–22338

    Google Scholar 

  108. Burghel GJ, Hurst CD, Watson CM, Chambers PA, Dickinson H, Roberts P et al (2015) Towards a Next-Generation Sequencing Diagnostic Service for Tumour Genotyping: A Comparison of Panels and Platforms. Biomed Res Int 478017

Download references

Acknowledgements

We thank V. Constans for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuèle Lechapt-Zalcman.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bekaert, L., Emery, E., Levallet, G. et al. Histopathologic diagnosis of brain metastases: current trends in management and future considerations. Brain Tumor Pathol 34, 8–19 (2017). https://doi.org/10.1007/s10014-016-0275-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10014-016-0275-3

Keywords

Navigation