Skip to main content

Advertisement

Log in

Expression and gene doses changes of the p53-regulator PPM1D in meningiomas: a role in meningioma progression?

  • Original Article
  • Published:
Brain Tumor Pathology Aims and scope Submit manuscript

Abstract

The aim of our study was to clarify the expression and gene copy number levels of protein phosphatase 1D magnesium-dependent, delta isoform (PPM1D), which is thought to be a regulator of the p53 protein in meningiomas of all three different WHO grades. Genomic DNA and mRNA were extracted from frozen tissues of meningiomas (WHO grade I, 20 cases; grade II, 17 cases; grade III, 20 cases). For analysis of the mRNA expression and gene dosage level of PPM1D, semiquantitative duplex RT-PCR, real-time RT-PCR, and semiquantitative duplex PCR were performed. We also analyzed several genes which locate near PPM1D in the genomic locus 17q22–24 using semiquantitative duplex RT-PCR. We found that the mean mRNA expression of PPM1D is higher in WHO grade II and III meningiomas than in grade I tumors. This finding is accompanied by moderate gene dosage increases for PPM1D in meningiomas of higher grades. Other genes located in the vicinity of PPM1D also showed mRNA overexpression in single meningioma cases. For these genes, however, no significant expression differences between meningioma grades could be observed. Thus, PPM1D in the chromosomal location 17q22–24 might be the most relevant candidate gene with respect to a potential functional implication in meningioma progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Perry A, Louis D, Scheithauer B et al (2007) Meningiomas. In: Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (eds) The 2007 WHO classification of tumours of the central nervous system, 4th edn. IARC Press, Lyon, pp 164–172

    Google Scholar 

  2. Perry A, Scheithauer BW, Stafford SL et al (1999) “Malignancy” in meningiomas: a clinicopathologic study of 116 patients, with grading implications. Cancer 85:2046–2056

    CAS  PubMed  Google Scholar 

  3. Weber RG, Bostrom J, Wolter M et al (1997) Analysis of genomic alterations in benign, atypical, and anaplastic meningiomas: toward a genetic model of meningioma progression. Proc Natl Acad Sci USA 94:14719–14724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Barski D, Wolter M, Reifenberger G et al (2010) Hypermethylation and transcriptional downregulation of the TIMP3 gene is associated with allelic loss on 22q12.3 and malignancy in meningiomas. Brain Pathol 20:623–631

    Article  CAS  PubMed  Google Scholar 

  5. Clark VE, Erson-Omay EZ, Serin A et al (2013) Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science 339:1077–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Prives C, Hall PA (1999) The p53 pathway. J Pathol 187:112–126

    Article  CAS  PubMed  Google Scholar 

  7. Purvis JE, Karhohs KW, Mock C et al (2012) p53 dynamics control cell fate. Science 336:1440–1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Abdelzaher E, El-Gendi SM, Yehya A et al (2011) Recurrence of benign meningiomas: predictive value of proliferative index, BCL2, p53, hormonal receptors and HER2 expression. Br J Neurosurg 25:707–713

    Article  PubMed  Google Scholar 

  9. Aguiar PH, Agner C, Simm R et al (2002) p53 Protein expression in meningiomas—a clinicopathologic study of 55 patients. Neurosurg Rev 25:252–257

    Article  PubMed  Google Scholar 

  10. Amatya VJ, Takeshima Y, Inai K (2004) Methylation of p14(ARF) gene in meningiomas and its correlation to the p53 expression and mutation. Mod Pathol 17:705–710

    Article  CAS  PubMed  Google Scholar 

  11. Yang SY, Park CK, Park SH et al (2008) Atypical and anaplastic meningiomas: prognostic implications of clinicopathological features. J Neurol Neurosurg Psychiatry 79:574–580

    Article  PubMed  Google Scholar 

  12. Bostrom J, Meyer-Puttlitz B, Wolter M et al (2001) Alterations of the tumor suppressor genes CDKN2A (p16(INK4a)), p14(ARF), CDKN2B (p15(INK4b)), and CDKN2C (p18(INK4c)) in atypical and anaplastic meningiomas. Am J Pathol 159:661–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bulavin DV, Demidov ON, Saito S et al (2002) Amplification of PPM1D in human tumors abrogates p53 tumor-suppressor activity. Nat Genet 31:210–215

    Article  CAS  PubMed  Google Scholar 

  14. Lu X, Nguyen TA, Moon SH et al (2008) The type 2C phosphatase Wip1: an oncogenic regulator of tumor suppressor and DNA damage response pathways. Cancer Metastasis Rev 27:123–135

    Article  PubMed  PubMed Central  Google Scholar 

  15. Saito-Ohara F, Imoto I, Inoue J et al (2003) PPM1D is a potential target for 17q gain in neuroblastoma. Cancer Res 63:1876–1883

    CAS  PubMed  Google Scholar 

  16. Hirasawa A, Saito-Ohara F, Inoue J et al (2003) Association of 17q21-q24 gain in ovarian clear cell adenocarcinomas with poor prognosis and identification of PPM1D and APPBP2 as likely amplification targets. Clin Cancer Res 9:1995–2004

    CAS  PubMed  Google Scholar 

  17. van den Boom J, Wolter M, Kuick R et al (2003) Characterization of gene expression profiles associated with glioma progression using oligonucleotide-based microarray analysis and real-time reverse transcription-polymerase chain reaction. Am J Pathol 163:1033–1043

    Article  PubMed  PubMed Central  Google Scholar 

  18. Buschges R, Ichimura K, Weber RG et al (2002) Allelic gain and amplification on the long arm of chromosome 17 in anaplastic meningiomas. Brain Pathol 12:145–153

    Article  CAS  PubMed  Google Scholar 

  19. Yokota J, Yamamoto T, Toyoshima K et al (1986) Amplification of c-erbB-2 oncogene in human adenocarcinomas in vivo. Lancet 1:765–767

    Article  CAS  PubMed  Google Scholar 

  20. Sinclair CS, Rowley M, Naderi A et al (2003) The 17q23 amplicon and breast cancer. Breast Cancer Res Treat 78:313–322

    Article  CAS  PubMed  Google Scholar 

  21. Ehrbrecht A, Muller U, Wolter M et al (2006) Comprehensive genomic analysis of desmoplastic medulloblastomas: identification of novel amplified genes and separate evaluation of the different histological components. J Pathol 208:554–563

    Article  CAS  PubMed  Google Scholar 

  22. Couch FJ, Wang XY, Wu GJ et al (1999) Localization of PS6K to chromosomal region 17q23 and determination of its amplification in breast cancer. Cancer Res 59:1408–1411

    CAS  PubMed  Google Scholar 

  23. Jacobs JJ, Keblusek P, Robanus-Maandag E et al (2000) Senescence bypass screen identifies TBX2, which represses Cdkn2a (p19(ARF)) and is amplified in a subset of human breast cancers. Nat Genet 26:291–299

    Article  CAS  PubMed  Google Scholar 

  24. Cai DX, James CD, Scheithauer BW et al (2001) PS6K amplification characterizes a small subset of anaplastic meningiomas. Am J Clin Pathol 115:213–218

    Article  CAS  PubMed  Google Scholar 

  25. Surace EI, Lusis E, Haipek CA et al (2004) Functional significance of S6K overexpression in meningioma progression. Ann Neurol 56:295–298

    Article  CAS  PubMed  Google Scholar 

  26. Fiscella M, Zhang H, Fan S et al (1997) Wip1, a novel human protein phosphatase that is induced in response to ionizing radiation in a p53-dependent manner. Proc Natl Acad Sci USA 94:6048–6053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Takekawa M, Adachi M, Nakahata A et al (2000) p53-inducible wip1 phosphatase mediates a negative feedback regulation of p38 MAPK-p53 signaling in response to UV radiation. EMBO J 19:6517–6526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Takekawa M, Maeda T, Saito H (1998) Protein phosphatase 2Cα inhibits the human stress-responsive p38 and JNK MAPK pathways. EMBO J 17:4744–4752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hanada M, Kobayashi T, Ohnishi M et al (1998) Selective suppression of stress-activated protein kinase pathway by protein phosphatase 2C in mammalian cells. FEBS Lett 437:172–176

    Article  CAS  PubMed  Google Scholar 

  30. Bulavin DV, Phillips C, Nannenga B et al (2004) Inactivation of the Wip1 phosphatase inhibits mammary tumorigenesis through p38 MAPK-mediated activation of the p16(Ink4a)-p19(Arf) pathway. Nat Genet 36:343–350

    Article  CAS  PubMed  Google Scholar 

  31. Li J, Yang Y, Peng Y et al (2002) Oncogenic properties of PPM1D located within a breast cancer amplification epicenter at 17q23. Nat Genet 31:133–134

    Article  CAS  PubMed  Google Scholar 

  32. Tan DS, Lambros MB, Rayter S et al (2009) PPM1D is a potential therapeutic target in ovarian clear cell carcinomas. Clin Cancer Res 15:2269–2280

    Article  CAS  PubMed  Google Scholar 

  33. Wang P, Rao J, Yang H et al (2011) Wip1 over-expression correlated with TP53/p14(ARF) pathway disruption in human astrocytomas. J Surg Oncol 104:679–684

    Article  CAS  PubMed  Google Scholar 

  34. Rauta J, Alarmo EL, Kauraniemi P et al (2006) The serine-threonine protein phosphatase PPM1D is frequently activated through amplification in aggressive primary breast tumours. Breast Cancer Res Treat 95:257–263

    Article  CAS  PubMed  Google Scholar 

  35. Khan J, Parsa NZ, Harada T et al (1998) Detection of gains and losses in 18 meningiomas by comparative genomic hybridization. Cancer Genet Cytogenet 103:95–100

    Article  CAS  PubMed  Google Scholar 

  36. Yagi H, Chuman Y, Kozakai Y et al (2012) A small molecule inhibitor of p53-inducible protein phosphatase PPM1D. Bioorg Med Chem Lett 22:729–732

    Article  CAS  PubMed  Google Scholar 

  37. Zhang X, Wan G, Mlotshwa S et al (2010) Oncogenic Wip1 phosphatase is inhibited by miR-16 in the DNA damage signaling pathway. Cancer Res 70:7176–7186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim MS, Kim KH, Lee EH et al (2014) Results of immunohistochemical staining for cell cycle regulators predict the recurrence of atypical meningiomas. J Neurosurg 121:1189–1200

    Article  PubMed  Google Scholar 

  39. Ellison DW, Lunec J, Gallagher PJ et al (1995) Accumulation of wild-type p53 in meningiomas. Neuropathol Appl Neurobiol 21:136–142

    Article  CAS  PubMed  Google Scholar 

  40. Ohgaki H, Eibl RH, Schwab M et al (1993) Mutations of the p53 tumor suppressor gene in neoplasms of the human nervous system. Mol Carcinog 8:74–80

    Article  CAS  PubMed  Google Scholar 

  41. Wang JL, Zhang ZJ, Hartman M et al (1995) Detection of TP53 gene mutation in human meningiomas: a study using immunohistochemistry, polymerase chain reaction/single-strand conformation polymorphism and DNA sequencing techniques on paraffin-embedded samples. Int J Cancer 64:223–228

    Article  CAS  PubMed  Google Scholar 

  42. Zhang L, Chen LH, Wan H et al (2014) Exome sequencing identifies somatic gain-of-function PPM1D mutations in brainstem gliomas. Nat Genet 46:726–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Dr. Edward Barroga, Associate Professor and Senior Medical Editor from the Department of International Medical Communications of Tokyo Medical University for editing and reviewing the English manuscript. SF would like to thank Professor Haraoka (Department of Neurosurgery, Tokyo Medical University) and Professor Reifenberger (Department of Neuropathology, Heinrich-Heine University) for helpful suggestions in the initiation of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinjiro Fukami.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest associated with this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukami, S., Riemenschneider, M.J., Kohno, M. et al. Expression and gene doses changes of the p53-regulator PPM1D in meningiomas: a role in meningioma progression?. Brain Tumor Pathol 33, 191–199 (2016). https://doi.org/10.1007/s10014-016-0252-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10014-016-0252-x

Keywords

Navigation