Skip to main content

Advertisement

Log in

Hypoxia upregulates aldehyde dehydrogenase isoform 1 (ALDH1) expression and induces functional stem cell characteristics in human glioblastoma cells

  • Original Article
  • Published:
Brain Tumor Pathology Aims and scope Submit manuscript

Abstract

Aldehyde dehydrogenase 1 (ALDH1) has been used to isolate tumorigenic stem-like cells in a large number of tumors, including glioblastoma multiforme (GBM). We recently showed that human glioblastoma cells with high ALDH1 (ALDH1high) activity contain stem-cell-like characteristics. In the study reported here, we isolated established and primary human glioblastoma cells based on their ALDH1 expression. When tested for asymmetric division, only cells with ALDH1high expression were able to restore heterogeneous populations after a few days, whereas cells with ALDH1low levels could not. Most interestingly, the capacity of cells with ALDH1low levels to divide asymmetrically into cells with either ALDH1high or ALDH1low expression could be restored after exposure to hypoxic culture conditions. Consequently, we found neurosphere formation reinstated in posthypoxic, formerly ALDH1low, cells. The direct involvement of ALDH1 could be confirmed by ALDH1 small hairpin ribonucleic acid (shRNA) knockdown, suggesting ALDH1 as an intracellular marker for the identification and isolation of stem-like glioblastoma cells. In summary, we show that ALDH1 expression correlates well with asymmetric division capacity and tumor sphere formation. Furthermore, we demonstrated that hypoxic culture conditions induce and/or upregulate ALDH1 expression in established and primary GBM cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hegi ME, Diserens A-C, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003

    Article  PubMed  CAS  Google Scholar 

  2. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  PubMed  CAS  Google Scholar 

  3. Stupp R, Hegi ME, Mason WP et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466

    Article  PubMed  CAS  Google Scholar 

  4. Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5:275–284

    Article  PubMed  CAS  Google Scholar 

  5. Jordan CT, Guzman ML, Noble M (2006) Cancer stem cells. N Engl J Med 355:1253–1261

    Article  PubMed  CAS  Google Scholar 

  6. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111

    Article  PubMed  CAS  Google Scholar 

  7. Ginestier C, Hur MH, Charafe-Jauffret E et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1:555–567

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Rasper M, Schafer A, Piontek G, Teufel J, Brockhoff G, Ringel F, Heindl S, Zimmer C, Schlegel J (2010) Aldehyde dehydrogenase 1 positive glioblastoma cells show brain tumor stem cell capacity. Neuro Oncol 12:1024–1033

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Marcato P, Dean CA, Giacomantonio CA, Lee PWK (2011) Aldehyde dehydrogenase: its role as a cancer stem cell marker comes down to the specific isoform. Cell Cycle 10:1378–1384

    Article  PubMed  CAS  Google Scholar 

  10. Gong C, Yao H, Liu Q, Chen J, Shi J, Su F, Song E (2010) Markers of tumor-initiating cells predict chemoresistance in breast cancer. PLoS ONE 5:e15630

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Nishikawa R (2010) Standard therapy for glioblastoma—a review of where we are. Neurol Med Chir (Tokyo) 50:713–719

    Article  Google Scholar 

  12. Cheng L, Bao S, Rich JN (2010) Potential therapeutic implications of cancer stem cells in glioblastoma. Biochem Pharmacol. 1–12

  13. Bertout JA, Patel SA, Simon MC (2008) The impact of O2 availability on human cancer. Nat Rev Cancer 8:967–975

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Ito K, Hirao A, Arai F et al (2006) Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med 12:446–451

    Article  PubMed  CAS  Google Scholar 

  15. Moore KA, Lemischka IR (2006) Stem cells and their niches. Science 311:1880–1885

    Article  PubMed  CAS  Google Scholar 

  16. Comerford KM, Wallace TJ, Karhausen J, Louis NA, Montalto MC, Colgan SP (2002) Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res 62:3387–3394

    PubMed  CAS  Google Scholar 

  17. Mazumdar J, Dondeti V, Simon MC (2009) Hypoxia-inducible factors in stem cells and cancer. J Cell Mol Med 13:4319–4328

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Vieira HLA, Alves PM, Vercelli A (2011) Modulation of neuronal stem cell differentiation by hypoxia and reactive oxygen species. Prog Neurobiol 93:444–455

    Article  PubMed  CAS  Google Scholar 

  19. Ottosen LDM, Hindkaer J, Husth M, Petersen DE, Kirk J, Ingerslev HJ (2006) Observations on intrauterine oxygen tension measured by fibre-optic microsensors. Reprod Biomed Online 13:380–385

    Article  PubMed  Google Scholar 

  20. Panchision DM (2009) The role of oxygen in regulating neural stem cells in development and disease. J Cell Physiol 220:562–568

    Article  PubMed  CAS  Google Scholar 

  21. Ezashi T, Das P, Roberts RM (2005) Low O2 tensions and the prevention of differentiation of hES cells. Proc Natl Acad Sci USA 102:4783–4788

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Yoshida Y, Takahashi K, Okita K, Ichisaka T, Yamanaka S (2009) Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell 5:237–241

    Article  PubMed  CAS  Google Scholar 

  23. Studer L, Csete M, Lee SH, Kabbani N, Walikonis J, Wold B, McKay R (2000) Enhanced proliferation, survival, and dopaminergic differentiation of CNS precursors in lowered oxygen. J Neurosci 20:7377–7383

    PubMed  CAS  Google Scholar 

  24. Jezek P, Hlavatá L (2005) Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Int J Biochem Cell Biol 37:2478–2503

    Article  PubMed  CAS  Google Scholar 

  25. Uchida K (2003) 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog Lipid Res 42:318–343

    Article  PubMed  CAS  Google Scholar 

  26. Stevens JF, Maier CS (2008) Acrolein: sources, metabolism, and biomolecular interactions relevant to human health and disease. Mol Nutr Food Res 52:7–25

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Makia NL, Bojang P, Falkner KC, Conklin DJ, Prough RA (2011) Murine hepatic aldehyde dehydrogenase 1a1 is a major contributor to oxidation of aldehydes formed by lipid peroxidation. Chem Biol Interact 191:278–287

    Article  PubMed  CAS  Google Scholar 

  28. Keith B, Simon MC (2007) Hypoxia-inducible factors, stem cells, and cancer. Cell 129:465–472

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Bray SJ (2006) Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 7:678–689

    Article  PubMed  CAS  Google Scholar 

  30. Gustafsson MV, Zheng X, Pereira T, Gradin K, Jin S, Lundkvist J, Ruas JL, Poellinger L, Lendahl U, Bondesson M (2005) Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell 9:617–628

    Article  PubMed  CAS  Google Scholar 

  31. Fre S, Huyghe M, Mourikis P, Robine S, Louvard D, Artavanis-Tsakonas S (2005) Notch signals control the fate of immature progenitor cells in the intestine. Nature 435:964–968

    Article  PubMed  CAS  Google Scholar 

  32. Kumano K, Chiba S, Shimizu K, Yamagata T, Hosoya N, Saito T, Takahashi T, Hamada Y, Hirai H (2001) Notch1 inhibits differentiation of hematopoietic cells by sustaining GATA-2 expression. Blood 98:3283–3289

    Article  PubMed  CAS  Google Scholar 

  33. Stier S, Cheng T, Dombkowski D, Carlesso N, Scadden DT (2002) Notch1 activation increases hematopoietic stem cell self-renewal in vivo and favors lymphoid over myeloid lineage outcome. Blood 99:2369–2378

    Article  PubMed  CAS  Google Scholar 

  34. Weng AP, Ferrando AA, Lee W, Morris JP, Silverman LB, Sanchez-Irizarry C, Blacklow SC, Look AT, Aster JC (2004) Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306:269–271

    Article  PubMed  CAS  Google Scholar 

  35. Boyer LA, Lee TI, Cole MF et al (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122:947–956

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Hochedlinger K, Yamada Y, Beard C, Jaenisch R (2005) Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 121:465–477

    Article  PubMed  CAS  Google Scholar 

  37. Holmberg J, He X, Peredo I et al (2011) Activation of neural and pluripotent stem cell signatures correlates with increased malignancy in human glioma. PLoS ONE 6:e18454

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A, Weinberg RA (2008) An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40:499–507

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8:755–768

    Article  PubMed  CAS  Google Scholar 

  40. Wang J, Sakariassen PØ, Tsinkalovsky O et al (2008) CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. Int J Cancer 122:761–768

    Article  PubMed  CAS  Google Scholar 

  41. Ogden AT, Waziri AE, Lochhead RA et al (2008) Identification of A2B5+CD133- tumor-initiating cells in adult human gliomas. Neurosurgery 62:505–514 discussion 514–5

    Article  PubMed  Google Scholar 

  42. Shmelkov SV, Butler JM, Hooper AT et al (2008) CD133 expression is not restricted to stem cells, and both CD133+ and CD133− metastatic colon cancer cells initiate tumors. J Clin Invest 118:2111–2120

    PubMed  CAS  PubMed Central  Google Scholar 

  43. Nunes MC, Roy NS, Keyoung HM, Goodman RR, McKhann G, Jiang L, Kang J, Nedergaard M, Goldman SA (2003) Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat Med 9:439–447

    Article  PubMed  CAS  Google Scholar 

  44. Clément V, Marino D, Cudalbu C, Hamou M-F, Mlynarik V, de Tribolet N, Dietrich P-Y, Gruetter R, Hegi ME, Radovanovic I (2010) Marker-independent identification of glioma-initiating cells. Nature Publ Group 7:224–228

    Google Scholar 

  45. Pearce DJ, Taussig D, Simpson C, Allen K, Rohatiner AZ, Lister TA, Bonnet D (2005) Characterization of cells with a high aldehyde dehydrogenase activity from cord blood and acute myeloid leukemia samples. Stem Cells 23:752–760

    Article  PubMed  CAS  Google Scholar 

  46. Storms RW, Trujillo AP, Springer JB, Shah L, Colvin OM, Ludeman SM, Smith C (1999) Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity. Proc Natl Acad Sci USA 96:9118–9123

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Sun C, Liu YK (2011) Induced pluripotent cancer cells: progress and application. J Cancer Res Clin Oncol 137:1–8

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors express sincere gratitude to Lynette Henkel from the FACS core facility for her expert help with cell sorting, as well as gratitude to all involved physicians, nurses, and technicians. This research was funded by the SFB 824 of Deutsche Forschungsgemeinschaft (DFG). The authors gratefully acknowledge the support of the TUM Graduate School’s Faculty Graduate Centre of Medicine at Technische Universität München, Germany.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Soehngen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soehngen, E., Schaefer, A., Koeritzer, J. et al. Hypoxia upregulates aldehyde dehydrogenase isoform 1 (ALDH1) expression and induces functional stem cell characteristics in human glioblastoma cells. Brain Tumor Pathol 31, 247–256 (2014). https://doi.org/10.1007/s10014-013-0170-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10014-013-0170-0

Keywords

Navigation