Skip to main content
Log in

Can the Average Temperature Stabilize a System of Thermoelastic Plates?

  • Original Article
  • Published:
Vietnam Journal of Mathematics Aims and scope Submit manuscript

Abstract

We consider a system of thermoelastic plates with the same conductivity. The coupling in each plate component involves the average temperature of all the plates in the system. We show that if the coefficients of flexural rigidity are pairwise distinct, then the system underlying semigroup is exponentially stable. This is done first for the Fourier model, and then for the Maxwell–Cattaneo model. In particular, for the Maxwell–Cattaneo model, exponential stability is established when the rotational inertia is accounted for, while only polynomial stability is established otherwise. We use a combination of the multiplier techniques and the frequency domain method to prove all results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ammar Khodja, F., Benabdallah, A., Teniou, D.: Stabilisation d’un système similaire à celui de la thermoélasticité. C. R. Acad. Sci. Paris Sér. I Math. 322, 551–556 (1996)

    MathSciNet  MATH  Google Scholar 

  2. Arendt, W., Batty, C.J.K.: Tauberian theorems and stability of one-parameter semigroups. Trans. Amer. Math. Soc. 306, 837–852 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Avalos, G., Lasiecka, I.: Exponential stability of an uncontrolled thermoelastic system with varying boundary conditions. Appl. Anal. 68, 31–49 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Avalos, G., Lasiecka, I.: Exponential stability of a thermoelastic system with free boundary conditions without mechanical dissipation. SIAM J. Math. Anal. 29, 155–182 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benabdallah, A., Lasiecka, I.: Exponential decay rates for a full von Kármán system of dynamic thermoelasticity. J. Differ. Equ. 160, 51–93 (2000)

    Article  MATH  Google Scholar 

  6. Benchimol, C.D.: A note on weak stabilizability of contraction semigroups. SIAM J. Control Optim. 16, 373–379 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bisognin, E., Bisognin, V., Perla Menzala, G., Zuazua, E.: On exponential stability for von Kármán equations in the presence of thermal effects. Math. Methods Appl. Sci. 21, 393–416 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Borichev, A., Tomilov, Y.: Optimal polynomial decay of functions and operator semigroups. Math. Ann. 347, 455–478 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dafermos, C.: On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity. Arch. Rational Mech. Anal. 29, 241–271 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fernández Sare, H.D., Muñoz Rivera, J.E.: Optimal rates of decay in 2-d thermoelasticity with second sound. J. Math. Phys. 53, 073509 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dell’Oro, F., Muñoz Rivera, J.E., Pata, V.: Stability properties of an abstract system with applications to linear thermoelastic plates. J. Evol. Equ. 13, 777–794 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fernández Sare, H.D., Liu, Z., Racke, R.: Stability of abstract thermoelastic systems with inertial terms. J. Differ. Equ. 267, 7085–7134 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hajej, A., Hajjej, Z., Tebou, L.: Indirect stabilization of weakly coupled Kirchhoff plate and wave equations with frictional damping. J. Math. Anal. Appl. 474, 290–308 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hao, J., Liu, Z., Yong, J.: Regularity analysis for an abstract system of coupled hyperbolic and parabolic equations. J. Differ. Equ. 259, 4763–4798 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Haraux, A.: (on ResearchGate) Avant Internet, 36–41

  16. Haraux, A.: Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps. Port. Math. 46, 245–258 (1989)

    MATH  Google Scholar 

  17. Haraux, A.: On a completion problem in the theory of distributed control of wave equations. In: Brezis, H., Lions, J.L. (eds.) Nonlinear Partial Differential Equations and Their Applications. Collège De France Seminar, Vol. X (Paris, 1987–1988). Pitman Research Notes in Mathematics, Vol. 220, pp 241–271. Longman Sci. Tech., Harlow (1991)

  18. Huang, F.L.: Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces. Ann. Differ. Equ. 1, 43–56 (1985)

    MathSciNet  MATH  Google Scholar 

  19. Keyantuo, V., Tebou, L., Warma, M.: A Gevrey class semigroup for a thermoelastic plate model with a fractional laplacian: Between the Euler-Bernoulli and Kirchhoff models. Discrete Contin. Dyn. Syst. A 40, 2875–2889 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kim, J.U.: On the energy decay of a linear thermoelastic bar and plate. SIAM J. Math. Anal. 23, 889–899 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Komornik, V.: Exact Controllability and Stabilization. The Multiplier Method. RAM Masson & John Wiley, Paris (1994)

    MATH  Google Scholar 

  22. Lagnese, J.E.: Boundary Stabilization of Thin Plates. SIAM, Philadelphia (1989)

    Book  MATH  Google Scholar 

  23. Lasiecka, I., Triggiani, R.: Analyticity of thermo-elastic semigroups with free boundary conditions. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 27, 457–482 (1998)

    MathSciNet  MATH  Google Scholar 

  24. Lasiecka, I., Triggiani, R.: Two direct proofs on the analyticity of the s.c. semigroup arising in abstract thermo-elastic equations. Adv. Differ. Equ. 3, 387–416 (1998)

    MathSciNet  MATH  Google Scholar 

  25. Lasiecka, I., Triggiani, R.: Analyticity and lack thereof, of thermo-elastic semigroups. ESAIM Proc. 4, 199–222 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lasiecka, I., Triggiani, R.: Analyticity of thermo-elastic semigroups with coupled hinged/Neumann B.C. Abstr. Appl. Anal. 3, 428531 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lasiecka, I., Triggiani, R.: Structural decomposition of thermo-elastic semigroups with rotational forces. Semigroup Forum 60, 16–66 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lebeau, G., Zuazua, E.: Null-controllability of a system of linear thermoelasticity. Arch. Rational Mech. Anal. 141, 297–329 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lebeau, G., Zuazua, E.: Decay rates for the three-dimensional linear system of thermoelasticity. Arch. Rational Mech. Anal. 148, 179–231 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lions, J.-L.: Contrôlabilité Exacte, Perturbations Et Stabilisation Des Systèmes DistribuéS, Vol. 1, vol. 8. RMA Masson, Paris (1988)

    MATH  Google Scholar 

  31. Liu, K., Liu, Z.: Exponential stability and analyticity of abstract linear thermoelastic systems. Z. Angew. Math. Phys. 48, 885–904 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu, Z., Renardy, M.: A note on the equations of thermoelastic plate. Appl. Math. Lett. 8, 1–6 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  33. Liu, W.-J., Zuazua, E.: Uniform stabilization of the higher-dimensional system of thermoelasticity with a nonlinear boundary feedback. Quart. Appl. Math. 59, 269–314 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Muñoz Rivera, J.E., Portillo Oquendo, H.: A transmission problem for thermoelastic plates. Quart. Appl. Math. 62, 273–293 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, vol. 44. Springer-Verlag, New York (1983)

    MATH  Google Scholar 

  36. Perla-Menzala, G., Zuazua, E.: The energy decay rate for the modified von Kármán system of thermoelastic plates: An improvement. Appl. Math. Lett. 16, 531–534 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Prüss, J.: On the spectrum of c0-semigroups. Trans. Amer. Math. Soc. 284, 847–857 (1984)

    MathSciNet  MATH  Google Scholar 

  38. Rauch, J., Zhang, X., Zuazua, E.: Polynomial decay for a hyperbolic-parabolic coupled system. J. Math. Pures Appl. (9) 84, 407–470 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Racke, R.: Asymptotic behavior of solutions in linear 2- or 3-D thermoelasticity with second sound. Quart. Appl. Math. 61, 315–328 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  40. Russell, D.L.: The Dirichlet–Neumann boundary control problem associated with Maxwell’s equations in a cylindrical region. SIAM J. Control Optim. 24, 199–229 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  41. Russell, D.L.: A general framework for the study of indirect damping mechanisms in elastic systems. J. Math. Anal. Appl. 173, 339–358 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  42. Straughan, B.: Heat Waves Applied Mathematical Sciences, vol. 177. Springer, New York (2011)

    Google Scholar 

  43. Tebou, L.: Stabilization of some coupled hyperbolic/parabolic equations. Discrete Contin. Dyn. Syst. B 14, 1601–1620 (2010)

    MathSciNet  MATH  Google Scholar 

  44. Tebou, L.: Simultaneous observability and stabilization of some uncoupled wave equations. C. R. Acad. Sci. Paris, Ser. I 350, 57–62 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. Tebou, L.: Simultaneous stabilization of a system of interacting plate and membrane. Evol. Equ. Control Theory 2, 153–172 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. Tebou, L.: Simultaneous controllability of some uncoupled semilinear wave equations. Discrete Contin. Dyn. Syst. Ser. A 35, 3721–3743 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  47. Tebou, L.: Energy decay estimates for some weakly coupled Euler-Bernoulli and wave equations with indirect damping mechanisms. Math. Control Relat. Fields 2, 45–60 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  48. Tebou, L.: Uniform analyticity and exponential decay of the semigroup associated with a thermoelastic plate equation with perturbed boundary conditions. C. R. Math. Acad. Sci. Paris 351, 539–544 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  49. Tebou, L.: Indirect stabilization of a Mindlin–Timoshenko plate. J. Math. Anal. Appl. 449, 1880–1891 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  50. Triggiani, R.: Lack of uniform stabilization for noncontractive semigroups under compact perturbation. Proc. Amer. Math. Soc. 105, 375–383 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhang, X., Zuazua, E.: Decay of solutions of the system of thermoelasticity of type III. Commun. Contemp. Math. 5, 25–83 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to take this opportunity to express his thanks to Professor Enrique Zuazua for his constant friendship and support, since they first met more than two decades ago.

The author is also indebted to the anonymous referees whose thoughtful feedback has been very helpful in the final presentation of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis Tebou.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is a tribute to Professor Enrique Zuazua on the occasion of his sixtieth birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tebou, L. Can the Average Temperature Stabilize a System of Thermoelastic Plates?. Vietnam J. Math. 49, 787–814 (2021). https://doi.org/10.1007/s10013-021-00494-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10013-021-00494-8

Keywords

Mathematics Subject Classification (2010)

Navigation