Skip to main content
Log in

Weak Versus Strong Convergence of a Regularized Newton Dynamic for Maximal Monotone Operators

  • Published:
Vietnam Journal of Mathematics Aims and scope Submit manuscript

Abstract

In a Hilbert space \(\mathcal {H}\), given \(A:\mathcal {H} \rightrightarrows \mathcal {H}\) a general maximal monotone operator whose solution set is assumed to be non-empty, and λ(⋅) a time-dependent positive regularization parameter, we analyze, when t → + , the weak versus strong convergence properties of the trajectories of the Regularized Newton dynamic

$$\text{(RN)} \quad \left\{ \begin{array}{l} v(t)\in A(x(t)),\\ \lambda (t) \dot x(t) + \dot v(t) + v(t) =0. \end{array}\right. $$

The term \(\lambda (t) \dot x(t)\) acts as a Levenberg–Marquardt regularization of the continuous Newton dynamic associated with A, which makes (RN) a well-posed system. The coefficient λ(t) is allowed to tend to zero as t → + , which makes (RN) asymptotically close to the Newton continuous dynamic. As a striking property, when λ(t) does not converge too rapidly to zero as t → + (with λ(t) = e t as the critical size), Attouch and Svaiter showed that each trajectory generated by (RN) converges weakly to a zero of A. By adapting Baillon’s counterexample, we show a situation where A is the gradient of a smooth convex function, and there is a trajectory of the corresponding system (RN) that does not converge strongly. On the positive side, under certain particular assumptions about the operator A, or on the regularization parameter λ(⋅), we show the strong convergence when t → + of the (RN) trajectories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. 1when ψ is continuously differentiable, (d ψ)is the negative part of the measure with density the derivative ofψ.

References

  1. Abbas, B., Attouch, H., Svaiter, B.F.: Newton-like dynamics and forward-backward methods for structured monotone inclusions in Hilbert spaces. J. Optim. Theory Appl. 161, 331–360 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alvarez, F., Attouch, H., Bolte, J., Redont, P.: A second-order gradient-like dissipative dynamical system with Hessian-driven damping. Application to optimization and mechanics. J. Math. Pures Appl. 81, 747–779 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Attouch, H., Maingé, P.-E., Redont, P.: A second-order differential system with Hessian-driven damping; application to non-elastic shock laws. Differ. Equ. Appl. 4, 27–65 (2012)

    MathSciNet  MATH  Google Scholar 

  4. Attouch, H., Marques Alves, M., Svaiter, B.F.: A dynamic approach to a proximal-Newton method for monotone inclusions in Hilbert spaces, with complexity o(1/n 2). J. Convex Anal. 23, 139–180 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Attouch, H., Svaiter, B.F.: A continuous dynamical Newton-like approach to solving monotone inclusions. SIAM J. Control Optim. 49, 574–598 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Attouch, H., Redont, P., Svaiter, B.F.: Global convergence of a closed-loop regularized Newton method for solving monotone inclusions in Hilbert spaces. J. Optim. Theory Appl. 157, 624–650 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baillon, J.-B.: Un exemple concernant le comportement asymptotique de la solution du problème \(\frac {du}{dt} + {\Phi } (u) 0\). J. Funct. Anal. 28, 369–376 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  8. Baillon, J.-B.: Thèse université Paris VI (1978)

  9. Baillon, J.-B., Brézis, H.: Une remarque sur le comportement asymptotique des semi-groupes non linéaires. Houst. J. Math. 2, 5–7 (1976)

    MATH  Google Scholar 

  10. Bauschke, H.H., Combettes, P.L.: A weak-to-strong convergence principle for fejér-monotone methods in Hilbert spaces. Math. Oper. Res. 26, 248–264 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)

    Book  MATH  Google Scholar 

  12. Brézis, H.: Opérateurs Maximaux Monotones Et Semi-groupes De Contractions Dans Les Espaces De Hilbert. North-Holland/Elsevier, New-York (1973)

    MATH  Google Scholar 

  13. Browder, F.E.: Existence and approximation of solutions of nonlinear variational inequalities. Proc. Nat. Acad. Sci. USA 56, 1080–1086 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bruck, R.E.: Asymptotic convergence of nonlinear contraction semigroups in Hilbert spaces. J. Funct. Anal. 18, 15–26 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cominetti, R., Peypouquet, J., Sorin, S.: Strong asymptotic convergence of evolution equations governed by maximal monotone operators with Tikhonov regularization. J. Differ. Equ. 245, 3753–3763 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Crandall, M.G., Londen, S.O., Nohel, J.A.: An abstract nonlinear Volterra integrodifferential equation. J. Math. Anal. Appl. 64, 701–735 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  17. Goudou, X., Munier, J.: Asymptotic behavior of solutions of a gradient like integrodifferential Volterra inclusion. Adv. Math. Sci. Appl. 15, 509–525 (2005)

    MathSciNet  MATH  Google Scholar 

  18. Güler, O.: On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim. 29, 403–419 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Levenberg, K.: A method for the solution of certain non-linear problems in the least squares. Q. Appl. Math. 2, 164–168 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  20. Maingé, P.-E.: First-order continuous Newton-like systems for monotone inclusions. SIAM J. Control Optim. 51, 1615–1638 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Indust. Appl. Math. 11, 431–441 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  22. Minty, G.J.: Monotone (nonlinear) operators in Hilbert spaces. Duke Math. J. 29, 341–346 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  23. Monteiro, R.D.C., Svaiter, B.F.: On the complexity of the hybrid proximal extragradient method for the iterates and the ergodic mean. SIAM J. Optim. 20, 2755–2787 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Monteiro, R.D.C., Svaiter, B.F.: Iteration-complexity of a Newton proximal extragradient method for monotone variational inequalities and inclusion problems. SIAM J. Optim. 22, 914–935 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Peypouquet, J., Sorin, S.: Evolution equations for maximal monotone operators: asymptotic analysis in continuous and discrete time. J. Convex Anal. 17, 1113–1163 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Reich, S.: Nonlinear evolution equations and nonlinear ergodic theorems. Nonlinear Anal. 1, 319–330 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  27. Vergara, V., Zacher, R.: Lyapunov functions and convergence to steady state for differential equations of fractional order. Math. Z. 259, 287–309 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zeidler, E.: Nonlinear Functional Analysis and Its Applications, Part II: Monotone Operators. Springer, New York (1990)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hedy Attouch.

Additional information

Dedicated to Professor Dr. Michel Théra on his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attouch, H., Baillon, JB. Weak Versus Strong Convergence of a Regularized Newton Dynamic for Maximal Monotone Operators. Vietnam J. Math. 46, 177–195 (2018). https://doi.org/10.1007/s10013-017-0267-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10013-017-0267-6

Keywords

Mathematics Subject Classification 2010

Navigation