Skip to main content
Log in

Optimization of salt concentration and explanation of two peak percolation in blend solid polymer nanocomposite films

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The present paper is focused toward the preparation of the flexible and free-standing blend solid polymer electrolyte films based on PEO-PVP complexed with NaPF6 by the solution cast technique. The structural/morphological features of the synthesized polymer nanocomposite films have been investigated in detail using X-ray diffraction, Fourier transform infra-red spectroscopy, Field emission scanning electron microscope, and Atomic force microscopy techniques. The film PEO-PVP + NaPF6 (\( \ddot{\mathrm{O}}/{\mathrm{Na}}^{+}= \)8) exhibits highest ionic conductivity ~ 5.92 × 10−6 S cm−1 at 40 °C and ~ 2.46 × 10−4 S cm−1 at 100 °C. The temperature-dependent conductivity shows an Arrhenius type behavior and activation energy decreases with the addition of salt. The high temperature (100 °C) conductivity monitoring is done for the optimized PEO-PVP + NaPF6 (\( \ddot{\mathrm{O}}/{\mathrm{Na}}^{+}= \)8) highly conductive system and the conductivity is still maintained stable up to 160 h (approx. 7 days). The thermal transitions parameters were measured by the differential scanning calorimetry (DSC) measurements. The prepared polymer electrolyte film displays the smoother surface on addition of salt and a thermal stability up to 300 °C. The ion transference number (tion) for the highest conducting sample is found to be 0.997 and evidence that the present system is ion dominating with negligible electron contribution. Both linear sweep voltammetry and cyclic voltammetry supports the use of prepared polymer electrolyte with long-term cycle stability and thermal stability for the solid-state sodium ion batteries. Finally, a two peak percolation mechanism has been proposed on the basis of experimental findings.

A plot of free ion & ion pair area against salt content and AFM image of optimised system

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) LixCoO2 (0< x<−1): a new cathode material for batteries of high energy density. Mater Res Bull 15(6):783–789

    Article  CAS  Google Scholar 

  2. Bella F, Muñoz-García AB, Meligrana G, Lamberti A, Destro M, Pavone M, Gerbaldi C (2017) Unveiling the controversial mechanism of reversible Na storage in TiO2 nanotube arrays: amorphous versus anatase TiO2. Nano Res 10(8):2891–2903

    Article  CAS  Google Scholar 

  3. Placke T, Kloepsch R, Dühnen S, Winter M (2017) Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density. J Solid State Electrochem 21(7):1939–1964

    Article  CAS  Google Scholar 

  4. Li Y, Lu Y, Zhao C, Hu YS, Titirici MM, Li H et al (2017) Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage. Energy Storage Mater 7:130–151

    Article  Google Scholar 

  5. Peters J, Buchholz D, Passerini S, Weil M (2016) Life cycle assessment of sodium-ion batteries. Energy Environ Sci 9(5):1744–1751

    Article  CAS  Google Scholar 

  6. Wessells CD, Peddada SV, Huggins RA, Cui Y (2011) Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. Nano Lett 11(12):5421–5425

    Article  CAS  PubMed  Google Scholar 

  7. Wang Y, Mu L, Liu J, Yang Z, Yu X, Gu L, Hu YS, Li H, Yang XQ, Chen L, Huang X (2015) A novel high capacity positive electrode material with tunnel-type structure for aqueous sodium-ion batteries. Adv Energy Mater 5(22):1501005

    Article  CAS  Google Scholar 

  8. Pasta M, Wessells CD, Liu N, Nelson J, McDowell MT, Huggins RA, Toney MF, Cui Y (2014) Full open-framework batteries for stationary energy storage. Nat Commun 5:3007

    Article  CAS  PubMed  Google Scholar 

  9. Suo L, Borodin O, Wang Y, Rong X, Sun W, Fan X, Xu S, Schroeder MA, Cresce AV, Wang F, Yang C (2017) “Water-in-Salt” Electrolyte Makes Aqueous Sodium-Ion Battery Safe, Green, and Long-Lasting. Adv Energy Mater 7:1701189

    Article  CAS  Google Scholar 

  10. Colo F, Bella F, Nair JR, Gerbaldi C (2017) Light-cured polymer electrolytes for safe, low-cost and sustainable sodium-ion batteries. J Power Sources 365:293–302

    Article  CAS  Google Scholar 

  11. Singh V K, Singh S K, Gupta H, Balo L, Tripathi A K, Verma Y L, Singh R K (2018) Electrochemical investigations of Na0. 7CoO2 cathode with PEO-NaTFSI-BMIMTFSI electrolyte as promising material for Na-rechargeable battery. J Solid State Electrochem 1–11. DOI: 10.1007/s10008-018-3891-5

  12. Srivastava N, Kumar M (2016) Ion dynamics and relaxation behavior of NaPF6-doped polymer electrolyte systems. J Solid State Electrochem 20(5):1421–1428

    Article  CAS  Google Scholar 

  13. Fenton DE, Parker JM, Wright PV (1973) Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14(11):589

    Article  CAS  Google Scholar 

  14. Meyer WH (1998) Polymer electrolytes for lithium-ion batteries. Adv Mater 10(6):439–448

    Article  CAS  PubMed  Google Scholar 

  15. Sohn JY, Im JS, Shin J, Nho YC (2012) PVDF-HFP/PMMA-coated PE separator for lithium ion battery. J Solid State Electrochem 16(2):551–556

    Article  CAS  Google Scholar 

  16. Prabakaran P, Manimuthu RP, Gurusamy S (2017) Influence of barium titanate nanofiller on PEO/PVdF-HFP blend-based polymer electrolyte membrane for Li-battery applications. J Solid State Electrochem 21(5):1273–1285

    Article  CAS  Google Scholar 

  17. Bella F, Colò F, Nair JR, Gerbaldi C (2015) Photopolymer electrolytes for sustainable, upscalable, safe, and ambient-temperature sodium-ion secondary batteries. ChemSusChem 8(21):3668–3676

    Article  CAS  PubMed  Google Scholar 

  18. Sharma AL, Thakur AK (2011) AC conductivity and relaxation behavior in ion conducting polymer nanocomposite. Ionics 17(2):135–143

    Article  CAS  Google Scholar 

  19. Sharma AL, Thakur AK (2010) Polymer–ion–clay interaction based model for ion conduction in intercalation-type polymer nanocomposite. Ionics 16(4):339–350

    Article  CAS  Google Scholar 

  20. Xu R, Huang X, Lin X, Cao J, Yang J, Lei C (2017) The functional aqueous slurry coated separator using polyvinylidene fluoride powder particles for lithium-ion batteries. J Electroanal Chem 786:77–85

    Article  CAS  Google Scholar 

  21. Costa CM, Silva MM, Lanceros-Mendez S (2013) Battery separators based on vinylidene fluoride (VDF) polymers and copolymers for lithium ion battery applications. RSC Adv 3(29):11404–11417

    Article  CAS  Google Scholar 

  22. Xie J, Zhang Q (2016) Recent progress in rechargeable lithium batteries with organic materials as promising electrodes. J Mater Chem A 4(19):7091–7106

    Article  CAS  Google Scholar 

  23. Sadiq M, Arya A, Sharma AL (2016) Optimization of free standing polymer electrolytes films for lithium ion batteries application. Int Res Adv 3:16–20

    Google Scholar 

  24. Arya A, Sharma AL (2017) Insights into the use of polyethylene oxide in energy storage/conversion devices: a critical review. J Phys D Appl Phys 50(44):443002

    Article  CAS  Google Scholar 

  25. Chowdhury FI, Khandaker MU, Amin YM, Arof AK (2017) Effect of gamma radiation on the transport and structural properties of polyacrylonitrile-lithium bis (oxalato) borate films. Solid State Ionics 304:27–39

    Article  CAS  Google Scholar 

  26. Zhang C, Gamble S, Ainsworth D, Slawin AM, Andreev YG, Bruce PG (2009) Alkali metal crystalline polymer electrolytes. Nat Mater 8(7):580–584

    Article  CAS  PubMed  Google Scholar 

  27. Arya A, Sharma AL (2017) Polymer electrolytes for lithium ion batteries: a critical study. Ionics 23(3):497–540

    Article  CAS  Google Scholar 

  28. Choi BK, Kim YW, Shin HK (2000) Ionic conduction in PEO–PAN blend polymer electrolytes. Electrochim Acta 45(8-9):1371–1374

    Article  CAS  Google Scholar 

  29. Jacob MM, Prabaharan SR, Radhakrishna S (1997) Effect of PEO addition on the electrolytic and thermal properties of PVDF-LiClO4 polymer electrolytes. Solid State Ionics 104(3-4):267–276

    Article  CAS  Google Scholar 

  30. Arya A, Sharma S, Sharma AL, Dinesh K, Sadiq M (2016) Structural and dielectric behavior of blend polymer electrolyte based on PEO-PAN + LiPF6. Asian J Eng App Tech 5(1):4–7

    Google Scholar 

  31. Fan L, Dang Z, Nan CW, Li M (2002) Thermal, electrical and mechanical properties of plasticized polymer electrolytes based on PEO/P (VDF-HFP) blends. Electrochim Acta 48(2):205–209

    Article  CAS  Google Scholar 

  32. Joge P, Kanchan DK, Sharma P, Gondaliya N (2013) Effect of nano-filler on electrical properties of PVA-PEO blend polymer electrolyte. Indian J Pure Appl Phys 51:350

    CAS  Google Scholar 

  33. Ali TM, Padmanathan N, Selladurai S (2015) Effect of nanofiller CeO2 on structural, conductivity, and dielectric behaviors of plasticized blend nanocomposite polymer electrolyte. Ionics 21:829–840

    Article  CAS  Google Scholar 

  34. Premalatha M, Vijaya N, Selvasekarapandian S, Selvalakshmi S (2016) Characterization of blend polymer PVA-PVP complexed with ammonium thiocyanate. Ionics 22(8):1299–1310

    Article  CAS  Google Scholar 

  35. Prasanna CS, Suthanthiraraj SA (2016) Electrical, structural, and morphological studies of honeycomb-like microporous zinc-ion conducting poly (vinyl chloride)/poly (ethyl methacrylate) blend-based polymer electrolytes. Ionics 22(3):389–404

    Article  CAS  Google Scholar 

  36. Aravindan V, Vickraman P, Kumar TP (2007) ZrO2 nanofiller incorporated PVC/PVdF blend-based composite polymer electrolytes (CPE) complexed with LiBOB. J Membr Sci 305(1-2):146–151

    Article  CAS  Google Scholar 

  37. Ramesh S, Ramesh K, Arof AK (2013) Fumed silica-doped poly (vinyl chloride)-poly (ethylene oxide)(PVC/PEO)-based polymer electrolyte for lithium ion battery. Int J Electrochem Sci 8:8348–8355

    CAS  Google Scholar 

  38. Reddeppa N, Sharma AK, Rao VN, Chen W (2014) AC conduction mechanism and battery discharge characteristics of (PVC/PEO) polyblend films complexed with potassium chloride. Measurement 47:33–41

    Article  Google Scholar 

  39. Nadimicherla R, Kalla R, Muchakayala R, Guo X (2015) Effects of potassium iodide (KI) on crystallinity, thermal stability, and electrical properties of polymer blend electrolytes (PVC/PEO: KI). Solid State Ionics 278:260–267

    Article  CAS  Google Scholar 

  40. Arya A, Sharma AL (2016) Conductivity and stability properties of solid polymer electrolyte based on PEO-PAN+LiPF6 for energy storage. App Sci Lett 2:72–75

    Google Scholar 

  41. Kumar A, Deka M (2012) PEO/P (VdF-HFP) blend based Li+ ion-conducting composite polymer electrolytes dispersed with dedoped (insulating) polyaniline nanofibers. J Solid State Electrochem 16(1):35–44

    Article  CAS  Google Scholar 

  42. Reddy CVS, Zhu QY, Mai LQ, Chen W (2007) Electrochemical studies on PVC/PVdF blend-based polymer electrolytes. J Solid State Electrochem 11(4):543–548

    Article  CAS  Google Scholar 

  43. Zhang X, Takegoshi K, Hikichi K (1992) High-resolution solid-state 13C nuclear magnetic resonance study on poly (vinyl alcohol)/poly (vinylpyrrolidone) blends. Polymer 33(4):712–717

    Article  CAS  Google Scholar 

  44. Feng H, Feng Z, Shen L (1993) A high resolution solid-state nmr and dsc study of miscibility and crystallization behaviour of poly (vinyl alcohol) poly (N-vinyl-2-pyrrolidone) blends. Polymer 34(12):2516–2519

    Article  CAS  Google Scholar 

  45. Polu AR, Kumar R, Rhee HW (2015) Magnesium ion conducting solid polymer blend electrolyte based on biodegradable polymers and application in solid-state batteries. Ionics 21(1):125–132

    Article  CAS  Google Scholar 

  46. Kumar KK, Ravi M, Pavani Y, Bhavani S, Sharma AK, Rao VN (2011) Investigations on the effect of complexation of NaF salt with polymer blend (PEO/PVP) electrolytes on ionic conductivity and optical energy band gaps. Phys B: Cond Matt 406(9):1706–1712

    Article  CAS  Google Scholar 

  47. Vondrák J, Reiter J, Velická J, Sedlařı́ková M (2004) PMMA-based aprotic gel electrolytes. Solid State Ionics 170(1-2):79–82

    Article  CAS  Google Scholar 

  48. Hashmi SA, Upadhyaya HM, Thakur AK, Verma AL (2000) Experimental investigations on poly (ethylene oxide) based sodium ion conducting composite polymer electrolytes dispersed with SnO2. Ionics 6(3-4):248–259

    Article  CAS  Google Scholar 

  49. Song S, Kotobuki M, Zheng F, Xu C, Savilov SV, Hu N, Lu L, Wang Y, Li WD (2017) A hybrid polymer/oxide/ionic-liquid solid electrolyte for Na-metal batteries. J Mat Chem A 5(14):6424–6431

    Article  CAS  Google Scholar 

  50. Luo H, Liang X, Wang L, Zheng A, Liu C, Feng J (2014) Highly mobile segments in crystalline poly (ethylene oxide) 8: NaPF6 electrolytes studied by solid-state NMR spectroscopy. J Chem Phys 140(7):074901

    Article  CAS  PubMed  Google Scholar 

  51. Bhatt C, Swaroop R, Arya A, Sharma AL (2015) Effect of nano-filler on the properties of polymer nanocomposite films of PEO/PAN complexed with NaPF6. J Mater Sci Eng B 5:418–434

    CAS  Google Scholar 

  52. Koduru HK, Iliev MT, Kondamareddy KK, Karashanova D, Vlakhov T, Zhao XZ, Scaramuzza N (2016) Investigations on poly (ethylene oxide)(PEO)-blend based solid polymer electrolytes for sodium ion batteries. J Phys: Conf Series 764:012006

    Google Scholar 

  53. Roy A, Dutta B, Bhattacharya S (2017) Ion dynamics in NaBF4 salt-complexed PVC–PEO blend polymer electrolytes: correlation between average ion hopping length and network structure. Ionics 1–11

  54. Kumar KK, Ravi M, Pavani Y, Bhavani S, Sharma AK, Rao VN (2014) Investigations on PEO/PVP/NaBr complexed polymer blend electrolytes for electrochemical cell applications. J Membr Sci 454:200–211

    Article  CAS  Google Scholar 

  55. Jamesh MI, Prakash AS (2018) Advancement of technology towards developing Na-ion batteries. J Power Sources 378:268–300

    Article  CAS  Google Scholar 

  56. Kesavan K, Mathew CM, Rajendran S, Ulaganathan M (2014) Preparation and characterization of novel solid polymer blend electrolytes based on poly (vinyl pyrrolidone) with various concentrations of lithium perchlorate. Mate Sci Eng B 184:26–33

    Article  CAS  Google Scholar 

  57. Kesavan K, Mathew CM, Rajendran S (2014) Lithium ion conduction and ion-polymer interaction in poly (vinyl pyrrolidone) based electrolytes blended with different plasticizers. Chin Chem Lett 25(11):1428–1434

    Article  CAS  Google Scholar 

  58. Ma Y, Li LB, Gao GX, Yang XY, You Y (2016) Effect of montmorillonite on the ionic conductivity and electrochemical properties of a composite solid polymer electrolyte based on polyvinylidenedifluoride/polyvinyl alcohol matrix for lithium ion batteries. Electrochim Acta 187:535–542

    Article  CAS  Google Scholar 

  59. Kumar KN, Kang M, Sivaiah K, Ravi M, Ratnakaram YC (2016) Enhanced electrical properties of polyethylene oxide (PEO)+ polyvinylpyrrolidone (PVP): Li+. Ionics 22(6):815–825

    Article  CAS  Google Scholar 

  60. Das A, Thakur AK, Kumar K (2013) Exploring low temperature Li+ ion conducting plastic battery electrolyte. Ionics 19(12):1811–1823

    Article  CAS  Google Scholar 

  61. Sharma AL, Shukla N, Thakur AK (2008) Studies on structure property relationship in a polymer–clay nanocomposite film based on (PAN)8LiClO4. J Polym Sci B Polym Phys 46(23):2577–2592

    Article  CAS  Google Scholar 

  62. Sharma AL, Thakur AK (2013) Plastic separators with improved properties for portable power device applications. Ionics 19(5):795–809

    Article  CAS  Google Scholar 

  63. Das S, Ghosh A (2017) Charge carrier relaxation in different plasticized PEO/PVDF-HFP blend solid polymer electrolytes. J Phys Chem B 121(21):5422–5432

    Article  CAS  PubMed  Google Scholar 

  64. Vijaya N, Selvasekarapandian S, Karthikeyan S, Prabu M, Rajeswari N, Sanjeeviraja C (2013) Synthesis and characterization of proton conducting polymer electrolyte based on poly (N-vinyl pyrrolidone). J Appl Polym Sci 127(3):1538–1543

    Article  CAS  Google Scholar 

  65. Burba CM, Frech R (2005) Spectroscopic measurements of ionic association in solutions of LiPF6. J Phys Chem B 109(31):15161–15164

    Article  CAS  PubMed  Google Scholar 

  66. Sharma AL, Thakur AK (2011) Polymer matrix–clay interaction mediated mechanism of electrical transport in exfoliated and intercalated polymer nanocomposites. J Mater Sci 46(6):1916–1931

    Article  CAS  Google Scholar 

  67. Ni’mah YL, Cheng MY, Cheng JH, Rick J, Hwang BJ (2015) Solid-state polymer nanocomposite electrolyte of TiO2/PEO/NaClO4 for sodium ion batteries. J Power Sources 278:375–381

    Article  CAS  Google Scholar 

  68. Tang R, Jiang C, Qian W, Jian J, Zhang X, Wang H, Yang H (2015) Dielectric relaxation, resonance and scaling behaviors in Sr3Co2Fe24O41 hexaferrite. Sci Rep 5:13645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectric, London

    Google Scholar 

  70. Anilkumar KM, Jinisha B, Manoj M, Jayalekshmi S (2017) Poly (ethylene oxide)(PEO)–Poly (vinyl pyrrolidone)(PVP) blend polymer based solid electrolyte membranes for developing solid state magnesium ion cells. Eur Polym J 89:249–262

    Article  CAS  Google Scholar 

  71. Arya A, Sharma AL (2018) Structural, electrical properties and dielectric relaxations in Na+ ion conducting solid polymer electrolyte. J Phys Condens Matter 30:165402

    Article  PubMed  Google Scholar 

  72. Chilaka N, Ghosh S (2014) Dielectric studies of poly (ethylene glycol)-polyurethane/poly (methylmethacrylate)/montmorillonite composite. Electrochim Acta 134:232–241

    Article  CAS  Google Scholar 

  73. Reddy Polu A, Kumar R (2011) Impedance spectroscopy and FTIR studies of PEG-based polymer electrolytes. J Chem 8:347–353

    Google Scholar 

  74. Naveen Kumar P, Sasikala U, Sharma AK (2013) Investigations on conductivity and discharge profiles of novel (PEO+PEMA) polymer blend electrolyte. Int J Inno Res Sci Eng Tech 2:3575–3582

    Google Scholar 

  75. Koduru HK, Marino L, Scarpelli F, Petrov AG, Marinov YG, Hadjichristov GB, Iliev MT, Scaramuzza N (2017) Structural and dielectric properties of NaIO4–Complexed PEO/PVP blended solid polymer electrolytes. Curr App Phys 17:1518–1531

    Article  Google Scholar 

  76. Ramamohan K, Umadevi C, Achari VB, Sharma AK (2013) Conductivity studies on (PVC/PEMA) solid polymer blend electrolyte films complexed with NaIO4. Int J Plas Tech 17:139–148

    Article  CAS  Google Scholar 

  77. Deraman SK, Mohamed NS, Subban RH (2013) Conductivity and electrochemical studies on polymer electrolytes based on poly vinyl (chloride)-ammonium triflate-ionic liquid for proton battery. Int J Electrochem Sci 8:1459–1468

    CAS  Google Scholar 

  78. Laha P, Panda AB, Dahiwale S, Date K, Patil KR, Barhai PK, Das AK, Banerjee I, Mahapatra SK (2010) Effect of leakage current and dielectric constant on single and double layer oxides in MOS structure. Thin Solid Films 519(5):1530–1535

    Article  CAS  Google Scholar 

  79. Latif F, Aziz M, Katun N, Yahya MZ (2006) The role and impact of rubber in poly (methyl methacrylate)/lithium triflate electrolyte. J Power Sources 159:1401–1404

    Article  CAS  Google Scholar 

  80. Mohamad AA, Mohamed NS, Yahya MZ, Othman R, Ramesh S, Alias Y, Arof AK (2003) Ionic conductivity studies of poly (vinyl alcohol) alkaline solid polymer electrolyte and its use in nickel–zinc cells. Solid State Ionics 156:171–177

    Article  CAS  Google Scholar 

  81. Arof AK, Amirudin S, Yusof SZ, Noor IM (2014) A method based on impedance spectroscopy to determine transport properties of polymer electrolytes. Phys Chem Chem Phys 16:1856–1867

    Article  CAS  PubMed  Google Scholar 

  82. Arya A, Sadiq M, Sharma AL (2017) Effect of variation of different Nano filler on structural, electrical, dielectric and transport properties of blend polymer nanocomposites. Ionics. https://doi.org/10.1007/s11581-017-2364-7

  83. Arya A, Sharma AL (2017) Structural microstructural and electrochemical properties of dispersed type polymer nanocomposite films. J Phys D Appl Phys 51:045504

    Article  CAS  Google Scholar 

  84. Kim S, Park SJ (2007) Preparation and ion-conducting behaviors of poly (ethylene oxide)-composite electrolytes containing lithium montmorillonite. Solid State Ionics 178:973–979

    Article  CAS  Google Scholar 

  85. Laha P, Panda AB, Mahapatra SK, Barhai PK, Das AK, Banerjee I (2012) Development of rf plasma sputtered Al2O3–TiO2 multilayer broad band antireflecting coatings and its correlation with plasma parameters. Appl Surf Sci 258:2275–2282

    Article  CAS  Google Scholar 

  86. Dey A, Karan S, De SK (2013) Effect of nanoadditives on ionic conductivity of solid polymer electrolyte. Indian J Pure Appl Phys 51:281–288

    CAS  Google Scholar 

  87. Jinisha B, Anilkumar KM, Manoj M, Pradeep VS, Jayalekshmi S (2017) Development of a novel type of solid polymer electrolyte for solid state lithium battery applications based on lithium enriched poly (ethylene oxide)(PEO)/poly (vinyl pyrrolidone)(PVP) blend polymer. Electrochim Acta 235:210–222

    Article  CAS  Google Scholar 

  88. Ramesh S, Teh GB, Louh RF, Hou YK, Sin PY, Yi LJ (2010) Preparation and characterization of plasticized high molecular weight PVC-based polymer electrolytes. Sadhana 35:87–95

    Article  CAS  Google Scholar 

  89. Yang CC (2002) Polymer Ni–MH battery based on PEO–PVA–KOH polymer electrolyte. J Power Sources 109:22–31

    Article  CAS  Google Scholar 

  90. Zhang Y, Zhao Y, Gosselink D, Chen P (2015) Synthesis of poly (ethylene-oxide)/nanoclay solid polymer electrolyte for all solid-state lithium/sulfur battery. Ionics 21:381–385

    Article  CAS  Google Scholar 

  91. Sharma AL, Thakur AK (2010) Improvement in voltage, thermal, mechanical stability and ion transport properties in polymer-clay nanocomposites. J Appl Polym Sci 118:2743–2753

    Article  CAS  Google Scholar 

  92. Yadav N, Mishra K, Hashmi SA (2017) Optimization of porous polymer electrolyte for quasi-solid-state electrical double layer supercapacitor. Electrochim Acta 235:570–582

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors (AA) is thankful to the Central University of Punjab for providing the fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Sharma.

Additional information

Highlights

• Solid polymer electrolytes based on PEO-PVP complexed with NaPF6 are prepared.

• XRD, AFM, FESEM, and FTIR techniques have been performed.

• The prepared system reveals superior ionic conductivity and long-term stability.

• Temperature-dependent conductivity shows an Arrhenius nature.

• Correlation between the Tg, Tm, transport parameters and ionic conductivity is presented.

• A two peak percolation mechanism has been proposed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arya, A., Sharma, A.L. Optimization of salt concentration and explanation of two peak percolation in blend solid polymer nanocomposite films. J Solid State Electrochem 22, 2725–2745 (2018). https://doi.org/10.1007/s10008-018-3965-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-3965-4

Keywords

Navigation