Skip to main content

Advertisement

Log in

Enhanced electrochemical stability of carbon quantum dots-incorporated and ferrous-coordinated polypyrrole for supercapacitor

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Carbon quantum dots-incorporated and ferrous-coordinated polypyrrole (CQDs/PPy-Fe) was designed as active electrode material of supercapacitors to improve electrochemical stability of PPy. The CQDs/PPy-Fe was prepared by incorporating CQDs into PPy-Fe which was formed through electropolymerization of ferrous chloride-coordinated pyrrole monomer. The ferrous-coordinated pyrrole monomer-kept tetrahedron structure could restrain volume swelling or shrinkage of PPy during the charge/discharge process, accordingly leading to improved cycling stability. In addition, the modification of CQDs could enhance the electrical conductivity of PPy and further improved rate capability of PPy. Specifically, CQDs/PPy-Fe showed lower capacity decay ratio of 45.4% than PPy (59.1%) from 1.0 to 20.0 A g−1. The capacitance retention ratio after 2000 cycles of CQDs/PPy-Fe and PPy was 94.6 and 79.4% at 20.0 A g−1, respectively. Moreover, symmetrical supercapacitor based on CQDs/PPy-Fe exhibited high capacitance and cycling stability. The design of CQDs/PPy-Fe presents the promising supercapacitor application for electrochemical energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  PubMed  Google Scholar 

  2. Xie Y (2017) Overview of supercapacitance performance of graphene supported on porous substrates. Mater Tech 32:355–366

    Article  CAS  Google Scholar 

  3. Hu C-C, Chang K-H, Lin M-C, Wu Y-T (2006) Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett 6:2690–2695

    Article  CAS  PubMed  Google Scholar 

  4. Lu L, Xie Y, Zhao Z (2018) Improved electrochemical stability of NixCo2x(OH)6x/NiCo2O4 electrode material. J Alloys Compd 731:903–913

    Article  CAS  Google Scholar 

  5. Xie Y, Zhu F (2017) Electrochemical capacitance performance of polyaniline/tin oxide nanorod array for supercapacitor. J Solid State Electrochem 21:1675–1685

    Article  CAS  Google Scholar 

  6. Lu L, Xie Y (2017) Fabrication and supercapacitor behavior of phosphomolybdic acid/polyaniline/titanium nitride core-shell nanowire array. New J Chem 41:335–346

    Article  CAS  Google Scholar 

  7. Asiabi H, Yamini Y, Seidi S, Esrafili A, Rezaei F (2015) Electroplating of nanostructured polyaniline-polypyrrole composite coating in a stainless-steel tube for on-line in-tube solid phase microextraction. J Chromatogr 1397:19–26

    Article  CAS  Google Scholar 

  8. Xie Y, Tian F (2017) Capacitive performance of molybdenum nitride/titanium nitride nanotube array for supercapacitor. Mater Sci Eng B 215:64–70

    Article  CAS  Google Scholar 

  9. Xie Y, Gao R (2017) Electrochemical capacitance of titanium nitride modified lithium titanate nanotube array. J Alloys Compd 725:1–13

    Article  CAS  Google Scholar 

  10. Xie Y, Sha X (2018) Electrochemical cycling stability of nickel(II) coordinated polyaniline. Synth Met 237:29–39

    Article  CAS  Google Scholar 

  11. Xie Y, Du H (2015) Electrochemical capacitance of a carbon quantum dots-polypyrrole/titania nanotube hybrid. RSC Adv 5:89689–89697

    Article  CAS  Google Scholar 

  12. Yesi YS, Shown I, Ganguly A, Ngo TT, Chen LC, Chen KH (2016) Directly-grown hierarchical carbon nanotube@polypyrrole core-shell hybrid for high-performance flexible supercapacitors. Chemsuschem 9:370–378

    Article  CAS  PubMed  Google Scholar 

  13. Zhou Y, Xie Y (2017) Capacitive performance of ruthenium-coordinated polypyrrole. New J Chem 41:10312–10323

    Article  CAS  Google Scholar 

  14. Wang Y, Hu A (2014) Carbon quantum dots: synthesis, properties and applications. J Mater Chem C 2:6921–6939

    Article  CAS  Google Scholar 

  15. Li H, He X, Kang Z, Huang H, Liu Y, Liu J, Lian S, Tsang CHA, Yang X, Lee S-T (2010) Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew Chem Int Ed 49:4430–4434

    Article  CAS  Google Scholar 

  16. Bhattacharya K, Deb P (2015) Hybrid nanostructured C-dot decorated Fe3O4 electrode materials for superior electrochemical energy storage performance. Dalton T 44:9221–9229

    Article  CAS  Google Scholar 

  17. Zhao QL, Zhang ZL, Huang BH, Peng J, Zhang M, Pang DW (2008) Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem Commun 41:5116–5118

    Article  CAS  Google Scholar 

  18. Zhao Z, Xie Y (2017) Enhanced electrochemical performance of carbon quantum dots-polyaniline hybrid. J Power Sources 337:54–64

    Article  CAS  Google Scholar 

  19. Jung H-C, Won D-H, Yoon D-J, Kim Y-S, Kim B-I (2008) A study on the electronic structures of Li intercalated vanadium sulfide and oxide. J Korean Inst Met 46:604–608

    CAS  Google Scholar 

  20. Chen W, Lu Z, Li CM (2008) Sensitive human interleukin 5 impedimetric sensor based on polypyrrole-pyrrolepropylic acid-gold nanocomposite. Anal Chem 80:8485–8492

    Article  CAS  PubMed  Google Scholar 

  21. Chen LJ, Guo CX, Zhang QM, Lei YL, Xie JL, Ee SJ, Guai GH, Song QL, Li CM (2013) Graphene Quantum-Dot-Doped Polypyrrole Counter Electrode for High-Performance Dye-Sensitized Solar Cells. Acs Appl Mater Interface 5:2047–2052

    Article  CAS  Google Scholar 

  22. Demchenko AP, Dekaliuk MO (2013) Novel fluorescent carbonic nanomaterials for sensing and imaging. Methods Appl Fluoresc 1:1–17

    Google Scholar 

  23. Li Y, Wang SF, Zhang Y, Zhang YX (2005) Electrical properties and morphology of polypropylene/epoxy/glass fiber composites filled with carbon black. J Appl Polym Sci 98:1142–1149

    Article  CAS  Google Scholar 

  24. Chen J, Shu J, Zhang A, Heng J, Yan Z, Chen J (2016) Synthesis of carbon quantum dots/TiO2 nanocomposite for photo-degradation of rhodamine B and cefradine. Diamond Relat Mater 70:137–144

    Article  CAS  Google Scholar 

  25. Li Y, Zhong Y, Zhang Y, Weng W, Li S (2015) Carbon quantum dots/octahedral Cu2O nanocomposites for non-enzymatic glucose and hydrogen peroxide amperometric sensor. Sensors Actuators B: Chem 206:735–743

    Article  CAS  Google Scholar 

  26. Stempien Z, Rybicki T, Rybicki E, Kozanecki M, Szynkowska MI (2015) In-situ deposition of polyaniline and polypyrrole electroconductive layers on textile surfaces by the reactive ink-jet printing technique. Synth Met 202:49–62

    Article  CAS  Google Scholar 

  27. Banu A, Marcu M, Alexandrescu E, Anghel EM (2014) Electrochemical deposition and characterization of polyppyrrole coatings doped with nickel cobalt oxide for environmental applications. J Solid State Electrochem 18:2661–2671

    Article  CAS  Google Scholar 

  28. Wang WL, Wu YH, Li LH, Yan N, Wei B (2017) Homogeneous granular microstructures developed by phase separation and rapid solidification of liquid Fe-Sn immiscible alloy. J Alloys Compd 693:650–657

    Article  CAS  Google Scholar 

  29. Padwal PM, Kadam SL, Mane SM, Kulkarni SB (2016) Enhanced specific capacitance and supercapacitive properties of polyaniline-iron oxide (PANI-Fe2O3) composite electrode material. J Mater Sci 51:10499–10505

    Article  CAS  Google Scholar 

  30. Vequizo JJM, Zhang C, Ichimura M (2015) Fabrication of Cu2O/Fe-O heterojunction solar cells by electrodeposition. Thin Solid Films 597:83–87

    Article  CAS  Google Scholar 

  31. Yuasa M, Yamaguchi A, Itsuki H, Tanaka K, Yamamoto M, Oyaizu K (2005) Modifying carbon particles with polypyrrole for adsorption of cobalt ions as electrocatatytic site for oxygen reduction. Chem Mater 17:4278–4281

    Article  CAS  Google Scholar 

  32. Demoustier-Champagne S, Stavaux PY (1999) Effect of electrolyte concentration and nature on the morphology and the electrical properties of electropolymerized polypyrrole nanotubules. Chem Mater 11:829–834

    Article  CAS  Google Scholar 

  33. Furukawa Y, Tazawa S, Fujii Y, Harada I (1988) Raman-spectra of polypyrrole and its 2,5-C-13-substituted and c-deuterated analogs in doped and undoped states. Synth Met 24:329–341

    Article  CAS  Google Scholar 

  34. Shereema RM, Sruthi TV, Kumar VBS, Rao TP, Shankar SS (2015) Angiogenic profiling of synthesized carbon quantum dots. Biochem 54:6352–6356

    Article  CAS  Google Scholar 

  35. Duchet J, Legras R, Demoustier-Champagne S (1998) Chemical synthesis of polypyrrole: structure-properties relationship. Synth Met 98:113–122

    Article  CAS  Google Scholar 

  36. Wilbourn K, Murray RW (1988) Electrochemical doping reactions of the conducting ladder polymer benzimidazobenzophenanthroline (BBL). Macromol 21:89–96

    Article  CAS  Google Scholar 

  37. Gupta S (2008) Hydrogen bubble-assisted syntheses of polypyrrole micro/nanostructures using electrochemistry: structural and physical property characterization. J Raman Spectrosc 39:1343–1355

    Article  CAS  Google Scholar 

  38. Iturregui A, Arrieta N, Aramendia J, Arrizabalaga I, Murelaga X, Ignacio Baceta J, Angeles Olazabal M, Martinez-Arkarazo I, Manuel Madariaga J (2016) In-situ and laboratory Raman spectroscopic analysis on beachrock deposits: Characterisation of the trapped materials. J Raman Spectrosc 47:329–336

    Article  CAS  Google Scholar 

  39. Ortiz-Morales M, Soto-Bernal JJ, Frausto-Reyes C, Acosta-Ortiz SE, Gonzalez-Mota R, Rosales-Candelas I (2015) Raman spectroscopic analysis of iron chromium oxide microspheres generated by nanosecond pulsed laser irradiation on stainless steel. Spectrochim Acta Part A 145:505–510

    Article  CAS  Google Scholar 

  40. Banisharif A, Khodadadi AA, Mortazavi Y, Firooz AA, Beheshtian J, Agah S, Menbari S (2015) Highly active Fe2O3-doped TiO2 photocatalyst for degradation of trichloroethylene in air under UV and visible light irradiation: Experimental and computational studies. Appl Catal B 165:209–221

    Article  CAS  Google Scholar 

  41. Di Genova D, Hess K-U, Oryaelle Crevrel M, Dingwell DB (2016) Models for the estimation of Fe3+/Fe-tot ratio in terrestrial and extraterrestrial alkali- and iron-rich silicate glasses using Raman spectroscopy. Am Mineral 101:943–952

    Article  Google Scholar 

  42. Baek M-H, Ijagbemi CO, Kim D-S (2010) Spectroscopic studies on the oxidative decomposition of Malachite Green using ozone. J Environ Sci Health Part A 45:630–636

    Article  CAS  Google Scholar 

  43. Konwer S, Maiti J, Dolui SK (2011) Preparation and optical/electrical/electrochemical properties of expanded graphite-filled polypyrrole nanocomposite. Mater Chem Phys 128:283–290

    Article  CAS  Google Scholar 

  44. Deng JG, Peng YX, He CL, Long XP, Li P, Chan ASC (2003) Magnetic and conducting Fe3O4-polypyrrole nanoparticles with core-shell structure. Polym Int 52:1182–1187

    Article  CAS  Google Scholar 

  45. Bora C, Dolui SK (2012) Fabrication of polypyrrole/graphene oxide nanocomposites by liquid/liquid interfacial polymerization and evaluation of their optical, electrical and electrochemical properties. Polym 53:923–932

    Article  CAS  Google Scholar 

  46. Konwer S, Boruah R, Dolui SK (2011) Studies on conducting polypyrrole/graphene oxide composites as supercapacitor electrode. J Electron Mater 40:2248–2255

    Article  CAS  Google Scholar 

  47. Kakaei K, Javan H, Khamforoush M, Zarei SA (2016) Fabrication of new gas diffusion electrode based on carbon quantum dot and its application for oxygen reduction reaction. Int J Hydrogen Energy 41:14684–14691

    Article  CAS  Google Scholar 

  48. Wang W, Ni Y, Xu Z (2015) One-step uniformly hybrid carbon quantum dots with high-reactive TiO2 for photocatalytic application. J Alloys Compd 622:303–308

    Article  CAS  Google Scholar 

  49. Chernyak V, Reisfeld R (1991) Spectroscopic behavior of malachite green in sol-gel glasses. Chem Phys Lett 181:39–44

    Article  CAS  Google Scholar 

  50. Ryu KY, Lee SY, Park DY, Kim SY, Kim C (2017) A novel colorimetric chemosensor for detection of Co2+ and S2− in an aqueous environment. Sensors Actuators B: Chem 242:792–800

    Article  CAS  Google Scholar 

  51. Tamer Ö (2017) A unique manganese (II) complex of 4-methoxy-pyridine-2-carboxylate: Synthesis, crystal structure, FT-IR and UV-Vis spectra and DFT calculations. J Mol Struct 1144:370–378

    Article  CAS  Google Scholar 

  52. Guai GH, Song QL, Guo CX, Lu ZS, Chen T, Ng CM, Li CM (2012) Graphene-Pt\ITO counter electrode to significantly reduce Pt loading and enhance charge transfer for high performance dye-sensitized solar cell. Solar Energy 86:2041–2048

    Article  CAS  Google Scholar 

  53. Gudyma I, Ivashko V, Bobak A (2017) Surface and size effects in spin-crossover nanocrystals. Nanoscale Res Lett 12:101–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ye S, Fang L, Lu Y (2009) Contribution of charge-transfer effect to surface-enhanced IR for Ag@PPy nanoparticles. Phys Chem Chem Phys 11:2480–2484

    Article  CAS  PubMed  Google Scholar 

  55. Cui X, Lv R, Sagar RUR, Liu C, Zhang Z (2015) Reduced graphene oxide/carbon nanotube hybrid film as high performance negative electrode for supercapacitor. Electrochim Acta 169:342–350

    Article  CAS  Google Scholar 

  56. Raymundo-Pinero E, Kierzek K, Machnikowski J, Beguin F (2006) Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon 44:2498–2507

    Article  CAS  Google Scholar 

  57. Hsieh C-T, Hsu S-M, Lin J-Y, Teng H (2011) Electrochemical capacitors based on graphene oxide sheets usingdifferent aqueous electrolytes. J Phys Chem C 115:12367–12374

    Article  CAS  Google Scholar 

  58. Zhang L, Wang W, Cheng J, Shi Y, Zhang Q, Dou P, Xu X (2017) Skeleton networks of graphene wrapped double-layered polypyrrole/polyaniline nanotubes for supercapacitor applications. J Mater Sci 53:787–798

    Article  CAS  Google Scholar 

  59. Jian X, Li JG, Yang HM, Cao LL, Zhang EH, Liang ZH (2017) Carbon quantum dots reinforced polypyrrole nanowire via electrostatic self-assembly strategy for high-performance supercapacitors. Carbon 114:533–543

    Article  CAS  Google Scholar 

  60. Li S, Zhao C, Shu K, Wang C, Guo ZP, Wallace GG, Liu HK (2014) Mechanically strong high performance layered polypyrrole nano fibre/graphene film for flexible solid state supercapacitor. Carbon 79:554–562

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by National Natural Science Foundation of China (No. 21373047), Graduate Innovation Program of Jiangsu Province (KYLX16_0265), the Fundamental Research Funds for the Central Universities (2242017K41022), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yibing Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Xie, Y. Enhanced electrochemical stability of carbon quantum dots-incorporated and ferrous-coordinated polypyrrole for supercapacitor. J Solid State Electrochem 22, 2515–2529 (2018). https://doi.org/10.1007/s10008-018-3964-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-3964-5

Keywords

Navigation