Skip to main content
Log in

Electrode material dependent p- or n-like thermoelectric behavior of single electrochemically synthesized poly(2,2′–bithiophene) layer—application to thin film thermoelectric generator

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

We prepared poly(2,2′–bithiophene) (PBT) on top of Au and indium-tin oxide (ITO) bottom electrodes and determined the Seebeck coefficient in devices with Al top electrode. Negative Seebeck coefficient was observed in ITO/PBT/Al devices, whereas Au/PBT/Al devices showed positive Seebeck coefficient. This difference allowed the construction of a complete thermoelectric thin film generator with top electrode of Al and bottom electrode of ITO and Au (each one at half of the electrode area) in a single organic layer deposition step. The thermoelectric generator achieves ca. 800 μV K−1 at room temperature, which is a very high value for conjugated polymer-based devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Terry T (2000) Recent trends in thermoelectric materials research part two. Academic Press, San Diego

    Google Scholar 

  2. Bell LE (2008) Science 321:1457–1461

    Article  CAS  Google Scholar 

  3. Ashkroft NW, Mermin ND (1987) Solid state physics. CBS Publishing Asia, Saunders College

    Google Scholar 

  4. Bo Y, Liu W, Chen S, Wang H, Wang H, Chen G, Ren Z (2012) Nano Energy 1:472–478

    Article  Google Scholar 

  5. Yang B, Herwin A, Thanh TN (2008) HVAC&R Res 14:635–653

    Article  Google Scholar 

  6. Zhang Q, Sun Y, Xu W, Zhu D (2014) Adv Mater 26:6829–6851

    Article  CAS  Google Scholar 

  7. Zhang Q, Sun Y, Xu W, Zhu D (2012) Energy Environ Sci 5:9639–9644

    Article  CAS  Google Scholar 

  8. Sun Y, Sheng P, Di C, Jiao F, Xu W, Qiu D, Zhu D (2012) Adv Mater 24:932–937

    Article  CAS  Google Scholar 

  9. Toshima N (2002) Macromol Symp 186:81–86

    Article  CAS  Google Scholar 

  10. Mateeva N, Niculescu H, Schlenoff J, Testardi LR (1998) J Appl Phys 83:3111–3117

    Article  CAS  Google Scholar 

  11. Feng-Xing J, Jing-Kun X, Bao-Yang L, Yu X, Rong-Jin H, Lai-Feng L (2008) Chinese Phys Lett 25:2202–2205

    Article  Google Scholar 

  12. Bubnova O, Khan ZU, Malti A, Braun S, Fahlman M, Berggren M, Crispin X (2011) Nat Mater10:429–433

  13. Kim D, Kim Y, Choi K, Grunlan JC, Yu C (2010) ACS Nano 4:513–523

    Article  CAS  Google Scholar 

  14. Hewitt CA, Kaiser AB, Roth S, Craps M, Czerw R, Carroll DL (2012) NanoLett12:1307–1310

  15. He M, Qiu F, Lin Z (2013) Energy Environ Sci 6:1352–1361

    Article  Google Scholar 

  16. Yan L, Shao M, Wang H, Dudis D, Urbas A, Hu B (2011) Adv Mater 23:4120–4124

    Article  CAS  Google Scholar 

  17. Bradshaw G, Hughes AJ (1976) Thin Solid Films 33:L5–L8

    Article  CAS  Google Scholar 

  18. Goss CA, Charych DH, Majda M (1991) Anal Chem 63:85–88

    Article  CAS  Google Scholar 

  19. Leguenza EL, Patyk RL, Mello RM, Micaroni L, Koehler M, Hümmelgen IA (2007) J Solid State Electrochem 11:577–580

    Article  CAS  Google Scholar 

  20. Zhou Y, Yang D, Li L, Li F, Li JF (2014) Rev Sci Instrum 85:054904–054909

    Article  Google Scholar 

  21. Burns GW, Scroger MG, Strouse GF, Croarkin MC, Guthrie WF (1993) NASA STI/Recon Technical Report N 93:31214

    Google Scholar 

  22. Tsumura A, Koezuka H, Ando T (1986) Appl Phys Lett 49:1210–1212

    Article  CAS  Google Scholar 

  23. Tavares ACB, Serbena JPM, Hümmelgen IA, Meruvia MS (2014) Org Electron 15:738–742

    Article  CAS  Google Scholar 

  24. Hiraishi K, Masuhara A, Nakanishi H, Oikawa H, Shinohara Y (2009) Jpn J Appl Phys 48:071501–071504

    Article  Google Scholar 

  25. Souza JFP, Kowalski EL, Akcelrud LC, Serbena JPM (2014) J Solid State Electrochem 18:3491–3497

    Article  CAS  Google Scholar 

  26. Lampert MA, Mark P (1970) Current Injection in Solids, Academic Press, New York27 27. Ferrari EF, Koehler M, Hümmelgen IA (1997) Phys Rev B 55:9590–9597

  27. Guerrero A, Boix PP, Marchesi LF, Ripollis-Sanchez T, Pereira EC, Garcia-Belmonte G (2012) Sol Energ Mat Sol C 100:185–191

    Article  CAS  Google Scholar 

  28. Lu N, Li L, Banerjee W, Liu M (2016) Org Electron 29:27–32

    Article  CAS  Google Scholar 

  29. Park YW (1991) Synth Met 45:173–182

    Article  CAS  Google Scholar 

  30. Wang L, Jia X, Wang D, Zhu G, Li J (2013) Synth Met 181:79–85

    Article  CAS  Google Scholar 

  31. Masubuchi S, Kazama S, Mizoguchi K, Honda M, Kume K, Matsushita R, Matsuyama T (1993) Synth Met 57:4962–4967

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the financial support from CAPES and CNPQ. IAH would like to thank Prof. Frank Karasz for the issue related motivation and discussion over the years and Prof. Miguel Abbate for helpful discussions regarding XPS results. Authors also thank the Analysis and Testing Center of Huazhong University of Science and Technology for XPS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivo A. Hümmelgen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kublitski, J., Tavares, A.C.B., Serbena, J.P.M. et al. Electrode material dependent p- or n-like thermoelectric behavior of single electrochemically synthesized poly(2,2′–bithiophene) layer—application to thin film thermoelectric generator. J Solid State Electrochem 20, 2191–2196 (2016). https://doi.org/10.1007/s10008-016-3223-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3223-6

Keywords

Navigation