Skip to main content

Advertisement

Log in

Capacitive characteristics of nanocomposites of conducting polypyrrole and functionalized carbon nanotubes: pulse current synthesis and tailoring

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Conducting polypyrrole (PPy) is an attractive material for supercapacitors with a high specific capacitance and environmental friendliness feature, but it suffers from the limited power density and short cycling life due to the low ionic mobility and mechanic stress resulting from ions in/out solid phase, respectively. Here, we present PPy–p-toluenesulfonate (TOS) and functionalized single-walled carbon nanotube (FSWNT) nanorod-like composites deposited by pulse current method in TOS and FSWNT dispersive solutions, with a diameter of less than 20 nm due to the improved FSWNT concentration near the polymerization interface during pulse-off time. The reduced ion diffusion length and the high diffusion coefficient of PPy–TOS synthesized by pulse current method lead to the nanocomposites with a high specific capacitance of 360 F g−1 at a current loading of 20 A g−1 and an ultrafast charging/discharging capability with a value of 280 F g−1 at even 0.1 s. Moreover, the fine nanostructure, which can accommodate the mechanical stress during charging/discharging process, significantly prolongs the cycling life of the nanocomposites, with its capacitance well maintained of 80 % after 100,000 continuous cycles at a current load of 400 A g−1. All of these enable the nanocomposites to be excellent active materials for high-performance supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. ElKady MF, Strong V, Dubin S, Kaner RB (2012) Science 335:1326–1330

    Article  CAS  Google Scholar 

  2. Miller JR, Simon P (2008) Science 321:651–652

    Article  CAS  Google Scholar 

  3. Winter M, Brodd RJ (2004) Chem Rev 104:4245–4269

    Article  CAS  Google Scholar 

  4. Simon P, Gogotsi Y (2008) Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  5. Wang HL, Dai HJ (2013) Chem Soc Rev 42:3088–3133

    Article  CAS  Google Scholar 

  6. Arico AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W (2005) Nat Mater 4:366–377

    Article  CAS  Google Scholar 

  7. Lv P, Feng YY, Li Y, Feng W (2012) J Power Sources 220:160–168

    Article  CAS  Google Scholar 

  8. Wang J, Xu YL, Chen X, Du XF, Li XF (2007) Acta Phys -Chim Sin 23:299–304

    Article  CAS  Google Scholar 

  9. Sharma RK, Rastogi AC, Desu SB (2008) Electrochem Commun 10:268–272

    Article  CAS  Google Scholar 

  10. Wang J, Xu YL, Yan F, Zhu JB, Wang JP (2011) J Power Sources 196:2373–2379

    Article  CAS  Google Scholar 

  11. Wang JP, Xu YL, Zhu JB, Ren PG (2012) J Power Sources 208:138–143

    Article  CAS  Google Scholar 

  12. Groenendaal, Jonas F, Freitag D, Pielartzik H, Reynolds JR (2000) Adv Mater 12:481–494

    Article  CAS  Google Scholar 

  13. Hu CC, Lin XX (2002) J Electrochem Soc 149:A1049–A1057

    Article  CAS  Google Scholar 

  14. Reddy ALM, Gowda SR, Shaijumon MM, Ajayan PM (2012) Adv Mater 24:5045–5064

    Article  CAS  Google Scholar 

  15. Li X, Zhitomirsky I (2013) J Power Sources 221:49–56

    Article  CAS  Google Scholar 

  16. Paul S, Choi KS, Lee DJ, Sudhagar P, Kang YS (2012) Electrochim Acta 78:649–655

    Article  CAS  Google Scholar 

  17. Lin XQ, Xu YH (2008) Electrochim Acta 53:4990–4997

    Article  CAS  Google Scholar 

  18. Hughes M, Chen GZ, Shaffer MSP, Fray DJ, Windle AH (2002) Chem Mater 14:1610–1613

    Article  CAS  Google Scholar 

  19. Zhang QF, Uchaker E, Candelaria SL, Cao GZ (2013) Chem Soc Rev 42:3127–3171

    Article  CAS  Google Scholar 

  20. Zhou C, Zhang Y, Li Y, Liu J (2013) Nano Lett 13:2078–2085

    Article  CAS  Google Scholar 

  21. Fan JH, Wan MX, Zhu DB, Chang BH, Pan ZW, Xie SS (1999) Synth Met 102:1266–1267

    Article  CAS  Google Scholar 

  22. Chen GZ, Shaffer MSP, Coleby D, Dixon G, Zhou WZ, Fray DJ, Windle AH (2000) Adv Mater 12:522–526

    Article  CAS  Google Scholar 

  23. Hughes M, Shaffer MSP, Renouf AC, Singh C, Chen GZ, Fray J, Windle AH (2002) Adv Mater 14:382–385

    Article  CAS  Google Scholar 

  24. Peng C, Jin J, Chen GZ (2007) Electrochim Acta 53:525–537

    Article  CAS  Google Scholar 

  25. Liu J, Rinzler AG, Dai HJ, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov K, Huffman CB, Rodriguez-Macias F, Shon YS, Lee TR, Colbert DT, Smalley RE (1998) Science 280:1253–1256

    Article  CAS  Google Scholar 

  26. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chem Rev 106:1105–1136

    Article  CAS  Google Scholar 

  27. Wang J, Xu YL, Chen X, Sun XF (2007) Compos Sci Technol 67:2981–2985

    Article  CAS  Google Scholar 

  28. Sun XF, Xu YL, Wang J (2012) J Solid State Electrochem 16:1781–1789

    Article  CAS  Google Scholar 

  29. Wang J, Xu YL, Yan F, Zhu JB, Wang JP, Xiao F (2010) J Solid State Electrochem 14:1565–1575

    Article  CAS  Google Scholar 

  30. Wang JP, Xu YL, Wang J, Du XF, Xiao F, Li JB (2010) Synth Met 160:1826–1831

    Article  CAS  Google Scholar 

  31. Yoon CO, Sung HK, Kim JH, Barsoukov E, Kim JH, Lee H (1999) Synth Met 99:201–212

    Article  CAS  Google Scholar 

  32. Li X, Zhitomirsky I (2013) J Power Sources 221:49–56

    Article  CAS  Google Scholar 

  33. Ghosh S, Inganas O (1999) Adv Mater 11:1214–1218

    Article  CAS  Google Scholar 

  34. Torres-Gomez G, Tejada-Rosales EM, Gomez-Romero P (2001) Chem Mater 13:3693

    Article  CAS  Google Scholar 

  35. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer, New York

    Book  Google Scholar 

Download references

Acknowledgments

The authors thank the financial support by the National Natural Science Foundation of China (Grant No. 21274115, 21203145 and 51201128), Program for New Century Excellent Talents in University of China (Grant No. NCET-11-0433) and Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110201130005). The authors also thank Ms. Yanzhu Dai and Mr. Chuansheng Ma at International Center for Dielectric Research for their help in using SEM and TEM, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youlong Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Xu, Y., Zhu, J. et al. Capacitive characteristics of nanocomposites of conducting polypyrrole and functionalized carbon nanotubes: pulse current synthesis and tailoring. J Solid State Electrochem 20, 1413–1420 (2016). https://doi.org/10.1007/s10008-016-3132-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3132-8

Keywords

Navigation