Skip to main content

Advertisement

Log in

Electrodeposition of Ni-Mg alloys from 1-butyl-3-methylimidazolium chloride/glycerin eutectic-based ionic liquid

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrodeposition of Ni-Mg alloys in 1-butyl-3-methylimidazolium chloride/glycerin (BMIC/GL, 1:1 M ratio) eutectic-based ionic liquid containing 0.1 M MgCl2 and 0.05 M NiCl2 was investigated. It is found by cyclic voltammograms and analysis of the chronoamperometric transient that Mg can be co-deposited with Ni under the inducement effect of Ni in this solvent, and the co-electrodeposition of Ni and Mg on a glassy carbon electrode is a diffusion-controlled process, which follows an instantaneous nucleation and three-dimensional growth pattern. In addition, the composition, surface morphology, structure, and property for hydrogen storage of Ni-Mg alloy deposits were characterized by inductively coupled plasma atomic emission spectrometry (ICP-AES), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopic (SEM), and charge and discharge test, respectively. The deposition potential plays a central role in controlling the composition, surface morphology as well as the electrochemical hydrogen storage capacity of the resultant Ni-Mg alloys. The alloy obtained at −1.2 V (vs. Ag) is a two-phase mixture consisting of a solid solution and an amorphous phase, which exhibits the best electrochemical capacity of 81.6 mAh g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ma M, Hatano Y, Abe T, Watanabe K (2005) J Alloys Compd 391:213–220

    Article  Google Scholar 

  2. Lomnessa JK, Hamptonb MD, Giannuzzia LA (2002) Int J Hydrog Energy 27:915–920

    Article  Google Scholar 

  3. Rangelova V, Spassov T (2002) J Alloys Compd 345:148–154

    Article  CAS  Google Scholar 

  4. Janot R, Cuevas F, Latroche M, Percheron A (2006) Intermetallics 14:163–169

    Article  CAS  Google Scholar 

  5. Aydinbeylia N, Celikb ON, Gasana H, Aybarc K (2006) Int J Hydrog Energy 31:2266–2273

    Article  Google Scholar 

  6. Liu WH, Wu HQ, Lei YQ (1997) J Alloys Compd 252:234–243

    Article  CAS  Google Scholar 

  7. Akiyama T, Saito K, Saitaa I (2003) J Electrochem Soc E 150:450–454

    Article  Google Scholar 

  8. Liao L, Liu W, Xiao X (2004) J Electroanal Chem 566:341–350

    Article  CAS  Google Scholar 

  9. Lu D, Lu W (2009) Mater Chem Phys 117:395–398

    Article  CAS  Google Scholar 

  10. Buzzeo MC, Evans RG, Compton RG (2004) Chem Phys Chem 5:1106–1120

    CAS  Google Scholar 

  11. Abedin SZE, Endres F (2006) Chem Phys Chem 7:58–61

    Google Scholar 

  12. Su CN, An MZ, Yang PX, Gu HW, Guo XH (2010) Appl Surf Sci 256:4888–4893

    Article  CAS  Google Scholar 

  13. Gu CD, You YH, Yu YL, Qu SX, Tu JP (2011) Surf Coat Tech 205:4928–4933

    Article  CAS  Google Scholar 

  14. Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK (2004) J Am Chem Soc 126:9142–9147

    Article  CAS  Google Scholar 

  15. Ru JJ, Hua YX, Xu CY, Li J, Li Y, Wang D, Qi CC, Jie YF (2015) Appl Surf Sci 335:153–159

    Article  CAS  Google Scholar 

  16. Cottrell CG (1903) Z Phys Chem 42:385–431

    Google Scholar 

  17. Scharifker BR, Hills G (1983) Electrochim Acta 28:879–889

    Article  CAS  Google Scholar 

  18. Díaz-Morales O, Mostany J, Borrás C, Scharifker BR (2013) J Solid State Electrochem 17:345–351

    Article  Google Scholar 

  19. Scharifker BR, Mostany J (1984) J Electroanal Chem 177:13–23

    Article  CAS  Google Scholar 

  20. Xu XH, Hussey CL (1993) J Electrochem Soc 140:618–626

    Article  CAS  Google Scholar 

  21. Zhang QP, Hua YX, Wang R (2014) Phys Chem Chem Phys 16:27088–27095

    Article  CAS  Google Scholar 

  22. Yang HY, Guo XW, Chen XB, Wang SH, Wu GH, Ding J, Birbilis N (2012) Electrochim Acta 63:131–138

    Article  CAS  Google Scholar 

  23. Watanabe T (2004) Nano plating: microstructure formation theory of plated films and a database of plated films. Elsevier Science Publisher, Amsterdam

    Google Scholar 

  24. Liu WH (2005) J Alloys Compd 404-406:694–698

    Article  CAS  Google Scholar 

  25. Ruggeri S, Lenain C, Roue L, Liang GX, Huot J, Schulz R (2002) J Alloys Compd 339:195–201

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (Project No. 21263007, 51274108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cunying Xu.

Electronic supplementary material

ESM 1

(DOC 528 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Zhao, J., Hua, Y. et al. Electrodeposition of Ni-Mg alloys from 1-butyl-3-methylimidazolium chloride/glycerin eutectic-based ionic liquid. J Solid State Electrochem 20, 793–800 (2016). https://doi.org/10.1007/s10008-015-3112-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-3112-4

Keywords

Navigation