Skip to main content
Log in

Ni(OH)2/MoS x nanocomposite electrodeposited on a flexible CNT/PI membrane as an electrochemical glucose sensor: the synergistic effect of Ni(OH)2 and MoS x

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A nonenzymatic glucose sensor was constructed by electrodepositing molybdenum sulfide (MoS x )-nickel (II) hydroxide (Ni(OH)2) in sequence on a flexible carbon nanotube/polyimide (CNT/PI) composite membrane. The sensing material was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The electrocatalytic activity of the as-prepared nanomaterial toward glucose oxidation was investigated by cyclic voltammetry and amperometric measurement. The Ni(OH)2/MoS x /CNT/PI sensor demonstrated excellent properties including a wide linear range from 10 to 1600 μM of glucose, rapid response (<3 s), low detection limit of 5.4 μM, good selectivity, good repeatability, and long-term stability (2 weeks). The superior performances were attributed to the pronounced synergistic effect between Ni(OH)2 and MoS x . Furthermore, the excellent sensor was successfully applied to detect glucose in human blood serum samples by standard addition method with satisfactory recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108:814–825

    Article  CAS  Google Scholar 

  2. Crouch E, Cowell DC, Hoskins S, Pittson RW, Hart JP (2005) A novel, disposable, screen-printed amperometric biosensor for glucose in serum fabricated using a water-based carbon ink. Biosens Bioelectron 21:712–718

    Article  CAS  Google Scholar 

  3. Nan CF, Zhang Y, Zhang GM, Dong C, Shuang SM, Choi MMF (2009) Activation of nylon net and its application to a biosensor for determination of glucose in human serum. Enzym Microb Technol 44:249–253

    Article  CAS  Google Scholar 

  4. Jia JB, Wang BQ, Wu AG, Cheng GJ, Li Z, Dong SJ (2002) A method to construct a third-generation horseradish peroxidase biosensor: self-assembling gold nanoparticles to three-dimensional sol-gel network. Anal Chem 74:2217–2213

    Article  CAS  Google Scholar 

  5. Bo XJ, Bai J, Li Y, Guo LP (2011) The nanocomposite of PtPd nanoparticles/onion-like mesoporous carbon vesicle for nonenzymatic amperometric sensing of glucose. Sensors Actuators B 157:662–668

    Article  CAS  Google Scholar 

  6. He BL, Hong LJ, Lu J, Hu JG, Yang YY, Yuan JH, Niu L (2013) A novel amperometric glucose sensor based on PtIr nanoparticles uniformly dispersed on carbon nanotubes. Electrochim Acta 91:353–360

    Article  CAS  Google Scholar 

  7. Jena BK, Raj CR (2006) Enzyme-free amperometric sensing of glucose by using gold nanoparticles. Chem Eur J 12:2702–2708

    Article  CAS  Google Scholar 

  8. Mu Y, Jia DL, He YY, Miao YQ, Wu HL (2011) Nano nickel oxide modified non-enzymatic glucose sensors with enhanced sensitivity through an electrochemical process strategy at high potential. Biosens Bioelectron 26:2948–2952

    Article  CAS  Google Scholar 

  9. You TY, Niwa O, Chen ZL, Hayashi K, Tomita M, Hirono S (2003) An amperometric detector formed of highly dispersed Ni nanoparticles embedded in a graphite-like carbon film electrode for sugar determination. Anal Chem 75:5191–5196

    Article  CAS  Google Scholar 

  10. Safavi A, Maleki N, Farjami E (2009) Fabrication of a glucose sensor based on a novel nanocomposite electrode. Biosens Bioelectron 24:1655–1660

    Article  CAS  Google Scholar 

  11. Toghill KE, Xiao L, Phillips MA, Compton RG (2010) The nonenzymatic determination of glucose using an electrolytically fabricated nickel microparticle modified boron-doped diamond electrode or nickel foil electrode. Sensors Actuators B 147:642–652

    Article  CAS  Google Scholar 

  12. Hutton LA, Vidotti M, Patel AN, Newton ME, Unwin PR, Macpherson JV (2011) Electrodeposition of nickel hydroxide nanoparticles on boron-doped diamond electrodes for oxidative electrocatalysis. J Phys Chem C 115:1649–1658

    Article  CAS  Google Scholar 

  13. Valden M, Lai X, Goodman DW (1998) Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281:1647–1650

    Article  CAS  Google Scholar 

  14. Budroni G, Corma A (2006) Gold-organic-inorganic high-surface area materials as precursors of highly active catalysts. Angew Chem Int Ed 45:3328–3331

    Article  Google Scholar 

  15. Schubert MM, Hackenberg S, Veen VAC, Muhler M, Plzak V, Behm RJ (2001) CO oxidation over supported gold catalysts—“inert” and “active” support materials and their role for the oxygen supply during reaction. J Catal 197:113–122

    Article  CAS  Google Scholar 

  16. Li YG, Wang HL, Xie LM, Liang YY, Hong GS, Dai HJ (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133:7296–7299

    Article  CAS  Google Scholar 

  17. Zhang Y, Xu FG, Sun YJ, Shi Y, Wen ZW, Li Z (2011) Assembly of Ni(OH)2 nanoplates on reduced graphene oxide: a two dimensional nanocomposite for enzyme-free glucose sensing. J Mater Chem 21:16949–16954

    Article  CAS  Google Scholar 

  18. Huang JW, He YQ, Jin J, Li YR, Dong ZP, Li R (2014) A novel glucose sensor based on MoS2 nanosheet functionalized with Ni nanoparticles. Electrochim Acta 136:41–46

    Article  CAS  Google Scholar 

  19. Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147–150

    Article  CAS  Google Scholar 

  20. Chang K, Chen WX (2011) L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5:4720–4728

    Article  CAS  Google Scholar 

  21. Jaramillo TF, Jorgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I (2007) Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317:100–102

    Article  CAS  Google Scholar 

  22. Ji SS, Yang Z, Zhang C, Miao YE, Tjiu WW, Pan JS, Liu TX (2013) Nonenzymatic sensor for glucose based on a glassy carbon electrode modified with Ni(OH)2 nanoparticles grown on a film of molybdenum sulfide. Microchim Acta 180:1127–1134

    Article  CAS  Google Scholar 

  23. Xiang Q, Yu JG, Jaroniec M (2012) Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J Am Chem Soc 134:6575–6578

    Article  CAS  Google Scholar 

  24. Zhong X, Yang HD, Guo SJ, Li SW, Gou GL, Niu ZY, Dong ZP, Lei YJ, Jin J, Li R, Ma JT (2012) In situ growth of Ni-Fe alloy on graphene-like MoS2 for catalysis of hydrazine oxidation. J Mater Chem 22:13925–13927

    Article  CAS  Google Scholar 

  25. Subramoney S (1998) Novel nanocarbons—structure, properties, and potential applications. Adv Mater 10:1157–1171

    Article  CAS  Google Scholar 

  26. Geng HZ, Rosen R, Zheng B, Shimoda H, Fleming L, Liu J, Zhou O (2002) Fabrication and properties of composites of poly(ethylene oxide) and functionalized carbon nanotubes. Adv Mater 14:1387–1390

    Article  CAS  Google Scholar 

  27. Thostenson ET, Chou TW (2006) Processing-structure-multifunctional property relationship in carbon nanotube/epoxy composites. Carbon 44:3022–3329

    Article  CAS  Google Scholar 

  28. Zeng HL, Gao C, Wang YP, Watts PCP, Kong H, Cui XW, Yan DY (2006) In situ polymerization approach to multiwalled carbon nanotubes-reinforced nylon 1010 composites: mechanical properties and crystallization behavior. Polymer 47:113–122

    Article  CAS  Google Scholar 

  29. Jiang YM, Kou HH, Li JJ, Yu SJ, Du YL, Ye WC, Wang CM (2012) Synthesis of ZnTe dendrites on multi-walled carbon nanotubes/polyimide nanocomposite membrane by electrochemical atomic layer deposition and photoelectrical property research. J Solid State Chem 194:336–342

    Article  CAS  Google Scholar 

  30. Zhang X, Shi XZ, Wang CM (2009) Electrodeposition of Pt nanoparticles on carbon nanotubes-modified polyimide materials for electrocatalytic applications. Catal Commun 10:610–613

    Article  CAS  Google Scholar 

  31. Ho WK, Yu JC, Lin J, Yu JG, Li PS (2004) Preparation and photocatalytic behavior of MoS2 and WS2 nanocluster sensitized TiO2. Langmuir 20:5865–5869

    Article  CAS  Google Scholar 

  32. Li XL, Li YD (2004) MoS2 nanostructures: synthesis and electrochemical Mg2+ intercalation. J Phys Chem B 37:13893–13900

    Article  CAS  Google Scholar 

  33. Deki S, Hosokawa A, Beleke AB, Mizuhata M (2009) Alpha-Ni(OH)2 thin films fabricated by liquid phase deposition method. Thin Solid Films 517:1546–1554

    Article  CAS  Google Scholar 

  34. Huang JF (2009) Facile preparation of an ultrathin nickel film coated nanoporous gold electrode with the unique catalytic activity to oxidation of glucose. Chem Commun 10:1270–1272

    Article  CAS  Google Scholar 

  35. Coleman JN, Lotya M, O’Neill A, Bergin SD, King PJ, Khan U, Young K, Gaucher A, De S, Smith RJ, Shvets IV, Arora SK, Stanton G, Kim HY, Lee K, Kim GT, Duesberg GS, Hallam T, Boland JJ, Wang JJ, Donegan JF, Grunlan JC, Moriarty G, Shmeliov A, Nicholls RJ, Perkins JM, Grieveson EM, Theuwissen K, McComb DW, Nellist PD, Nicolosi V (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331:568–571

    Article  CAS  Google Scholar 

  36. Hao CX, Wen FS, Xiang JY, Wang LM, Hou H, Su ZB, Hu WT, Liu ZY (2014) Controlled incorporation of Ni(OH)2 nanoplates into flowerlike MoS2 nanosheets for flexible all-solid-state supercapacitors. Adv Funct Mater 24:6700–6707

    Article  CAS  Google Scholar 

  37. Ye WC, Kou HH, Liu QZ, Yan JF, Zhou F, Wang CM (2012) Electrochemical deposition of Au-Pt alloy particles with cauliflower-like microstructures for electrocatalytic methanol oxidation. Int J Hydrog Energy 37:4088–4097

    Article  CAS  Google Scholar 

  38. Khosravi M, Amini MK (2010) Carbon paper supported Pt/Au catalysts prepared via Cu underpotential deposition-redox replacement and investigation of their electrocatalytic activity for methanol oxidation and oxygen reduction reactions. Int J Hydrog Energy 35:10527–10538

    Article  CAS  Google Scholar 

  39. Lu LM, Zhang L, Qu FL, Lu HX, Zhang XB, Wu ZS, Huan SY, Wang QA, Shen GL, Yu RQ (2009) A nano-Ni based ultrasensitive nonenzymatic electrochemical sensor for glucose: enhancing sensitivity through a nanowire array strategy. Biosens Bioelectron 25:218–223

    Article  CAS  Google Scholar 

  40. Yi QF, Zhang JJ, Huang W, Liu XP (2007) Electrocatalytic oxidation of cyclohexanol on a nickel oxyhydroxide modified nickel electrode in alkaline solutions. Catal Commun 8:1017–1022

    Article  CAS  Google Scholar 

  41. Qiao NQ, Zheng JB (2012) Nonenzymatic glucose sensor based on glassy carbon electrode modified with a nanocomposite composed of nickel hydroxide and grapheme. Microchim Acta 177:103–109

    Article  CAS  Google Scholar 

  42. Deng CY, Chen JH, Chen XL, Xiao CH, Nie LH, Yao SZ (2008) Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon nanotubes modified electrode. Biosens Bioelectron 23:1272–1277

    Article  CAS  Google Scholar 

  43. Zhou KF, Zhu YH, Yang XL, Li CZ (2010) Electrocatalytic oxidation of glucose by the glucose oxidase immobilized in graphene-Au-nafion biocomposite. Electroanalysis 22:259–264

    Article  CAS  Google Scholar 

  44. Shamsipur M, Najafi M, Hosseini MRM (2010) Highly improved electrooxidation of glucose at a nickel (II) oxide/multi-walled carbon nanotube modified glassy carbon electrode. Bioelectrochemistry 77:120–124

    Article  CAS  Google Scholar 

  45. Jiang YM, Yu SJ, Li JJ, Jia LP, Wang CM (2013) Improvement of sensitive Ni(OH)2 nonenzymatic glucose sensor based on carbon nanotube/polyimide membrane. Carbon 63:367–375

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the National Natural Science Foundation of China (Nos. 51372106) for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Zhang or Chunming Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Zhang, Y., Ye, W. et al. Ni(OH)2/MoS x nanocomposite electrodeposited on a flexible CNT/PI membrane as an electrochemical glucose sensor: the synergistic effect of Ni(OH)2 and MoS x . J Solid State Electrochem 20, 133–142 (2016). https://doi.org/10.1007/s10008-015-3002-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-3002-9

Keywords

Navigation