Skip to main content

Advertisement

Log in

High-performance asymmetric full-cell supercapacitors based on CoNi2S4 nanoparticles and activated carbon

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

CoNi2S4 nanoparticles with a maximum specific capacitance of 1636.2 F g−1 are synthesized by a facile solvothermal method. In order to explore the real applying value, asymmetric full-cell supercapacitors are successfully assembled by employing CoNi2S4 nanoparticles as positive electrode and activated carbon as negative electrode. As a contrast, symmetric full-cell supercapacitors are also assembled by employing the CoNi2S4 nanoparticles as positive/negative electrode. Electrochemical properties of these assembled asymmetric and symmetric full-cell supercapacitors are investigated in 3.0 mol L−1 KOH electrolyte. Results show that the present asymmetric full-cell supercapacitors exhibit excellent electrochemical capacitance performance within the potential range of 0–1.6 V, i.e., a maximum specific capacitance of 163.9 F g−1, high energy density of 36.7 Wh kg−1 at a power density of 7630 W kg−1, and excellent cycling stability. Furthermore, two asymmetric full-cell supercapacitors linked in series cannot only light a red light-emitting diode, but also drive a rotating motor. Hence, one can see that the asymmetric full-cell supercapacitors based on CoNi2S4 nanoparticles and activated carbon have the promising potential application in the field of energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chen H, Cong TN, Yang W, Tan C, Li Y, Ding Y (2009) Prog Nat Sci 19:291–312

    Article  CAS  Google Scholar 

  2. Wang H, Dai H (2013) Chem Soc Rev 42:3088–3113

    Article  CAS  Google Scholar 

  3. Kötz R, Carlen M (2000) Electrochim Acta 45:2483–2498

    Article  Google Scholar 

  4. Liu C, Li F, Ma L-P, Cheng H-M (2010) Adv Mater 22:E28–E62

    Article  CAS  Google Scholar 

  5. Burke A (2000) J Power Sources 91:37–50

    Article  CAS  Google Scholar 

  6. Arico AS, Bruce P, Scrosati B, Tarascon J-M, van Schalkwijk W (2005) Nat Mater 4:366–377

    Article  CAS  Google Scholar 

  7. Simon P, Gogotsi Y (2008) Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  8. Izadi-Najafabadi A, Yasuda S, Kobashi K, Yamada T, Futaba DN, Hatori H, Yumura M, Iijima S, Hata K (2010) Adv Mater 22:E235–E241

    Article  CAS  Google Scholar 

  9. Wang G, Zhang L, Zhang J (2012) Chem Soc Rev 41:797–828

    Article  CAS  Google Scholar 

  10. Liu C, Yu Z, Neff D, Zhamu A, Jang BZ (2010) Nano Lett 10:4863–4868

    Article  CAS  Google Scholar 

  11. Lu X, Yu M, Zhai T, Wang G, Xie S, Liu T, Liang C, Tong Y, Li Y (2013) Nano Lett 13:2628–2633

    Article  CAS  Google Scholar 

  12. Yang P, Ding Y, Lin Z, Chen Z, Li Y, Qiang P, Ebrahimi M, Mai W, Wong CP, Wang ZL (2014) Nano Lett 14:731–736

    Article  CAS  Google Scholar 

  13. Jun Y, Zhuangjun F, Wei S, Guoqing N, Tong W, Qiang Z, Rufan Z, Linjie Z, Fei W (2012) Adv Funct Mater 22:2632–2641

    Article  Google Scholar 

  14. Jiang J, Li Y, Liu J, Huang X, Yuan C, Lou XW (2012) Adv Mater 24:5166–5180

    Article  CAS  Google Scholar 

  15. Vangari M, Pryor T, Jiang L (2012) J Energy Eng 139:72–79

    Article  Google Scholar 

  16. Park SH, Sun Y-K, Park KS, Nahm KS, Lee YS, Yoshio M (2002) Electrochim Acta 47:1721–1726

    Article  CAS  Google Scholar 

  17. Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Nat Nano 6:147–150

    Article  CAS  Google Scholar 

  18. Kreis C, Werth S, Adelung R, Kipp L, Skibowski M, Krasovskii EE, Schattke W (2003) Phys Rev B 68:235331

    Article  Google Scholar 

  19. Motizuki K, Nishio Y, Shirai M, Suzuki N (1996) J Phys Chem Solids 57:1091–1096

    Article  CAS  Google Scholar 

  20. Wei W, Cui X, Chen W, Ivey DG (2011) Chem Soc Rev 40:1697–1721

    Article  CAS  Google Scholar 

  21. Amaresh S, Karthikeyan K, Jang IC, Lee YS (2014) J Mater Chem A 2:11099–11106

    Article  CAS  Google Scholar 

  22. Huo H, Zhao Y, Xu C (2014) J Mater Chem A 2:15111–15117

    Article  CAS  Google Scholar 

  23. Ramadoss A, Kim T, Kim G-S, Kim SJ (2014) New J Chem 38:2379–2385

    Article  CAS  Google Scholar 

  24. Wang X, Ding J, Yao S, Wu X, Feng Q, Wang Z, Geng B (2014) J Mater Chem A 2:15958–15963

    Article  CAS  Google Scholar 

  25. Dai C-S, Chien P-Y, Lin J-Y, Chou S-W, Wu W-K, Li P-H, Wu K-Y, Lin T-W (2013) ACS Appl Mater Inter 5:12168–12174

    Article  CAS  Google Scholar 

  26. Ratha S, Rout CS (2013) ACS Appl Mater Inter 5:11427–11433

    Article  CAS  Google Scholar 

  27. Li L, Zhang Y, Shi F, Zhang Y, Zhang J, Gu C, Wang X, Tu J (2014) ACS Appl Mater Inter 6:18040–18047

    Article  CAS  Google Scholar 

  28. Xiao J, Wan L, Yang S, Xiao F, Wang S (2014) Nano Lett 14:831–838

    Article  CAS  Google Scholar 

  29. Chen W, Xia C, Alshareef HN (2014) ACS Nano 8:9531–9541

    Article  CAS  Google Scholar 

  30. Li Y, Cao L, Qiao L, Zhou M, Yang Y, Xiao P, Zhang Y (2014) J Mater Chem A 2:6540–6548

    Article  CAS  Google Scholar 

  31. Chen H, Jiang J, Zhao Y, Zhang L, Guo D, Xia D (2015) J Mater Chem A 3:428–437

    Article  CAS  Google Scholar 

  32. Chen H, Jiang J, Zhang L, Xia D, Zhao Y, Guo D, Qi T, Wan H (2014) J Power Sources 254:249–257

    Article  CAS  Google Scholar 

  33. Zhu Y, Wu Z, Jing M, Yang X, Song W, Ji X (2015) J Power Sources 273:584–590

    Article  CAS  Google Scholar 

  34. Hu W, Chen R, Xie W, Zou L, Qin N, Bao D (2014) ACS Appl Mater Inter 6:19318–19326

    Article  CAS  Google Scholar 

  35. Du W, Zhu Z, Wang Y, Liu J, Yang W, Qian X, Pang H (2014) RSC Adv 4:6998–7002

    Article  CAS  Google Scholar 

  36. Du W, Wang Z, Zhu Z, Hu S, Zhu X, Shi Y, Pang H, Qian X (2014) J Mater Chem A 2:9613–9619

    Article  CAS  Google Scholar 

  37. Zou R, Xu K, Wang T, He G, Liu Q, Liu X, Zhang Z, Hu J (2013) J Mater Chem A 1:8560–8566

    Article  CAS  Google Scholar 

  38. Chen H, Jiang J, Zhang L, Wan H, Qi T, Xia D (2013) Nanoscale 5:8879–8883

    Article  CAS  Google Scholar 

  39. Ohno Y (1991) Phys Rev B 44:1281–1291

    Article  CAS  Google Scholar 

  40. Abraham KM, Chaudhri SM (1986) J Electrochem Soc 133:1307–1311

    Article  CAS  Google Scholar 

  41. Christie AB, Lee J, Sutherland I, Walls JM (1983) Appl Surf Sci 15:224–237

    Article  CAS  Google Scholar 

  42. Salunkhe RR, Jang K, Lee S-W, Ahn H (2012) RSC Adv 2:3190–3193

    Article  CAS  Google Scholar 

  43. Du X, Wang C, Chen M, Jiao Y, Wang J (2009) J Phys Chem C 113:2643–2646

    Article  CAS  Google Scholar 

  44. Choi BG, Chang S-J, Kang H-W, Park CP, Kim HJ, Hong WH, Lee S, Huh YS (2012) Nanoscale 4:4983–4988

    Article  CAS  Google Scholar 

  45. Tang P, Han L, Zhang L (2014) ACS Appl Mater Inter 6:10506–10515

    Article  CAS  Google Scholar 

  46. Simon P, Gogotsi Y (2012) Accounts Chem Res 46:1094–1103

    Article  Google Scholar 

  47. Wang Y-G, Wang Z-D, Xia Y-Y (2005) Electrochim Acta 50:5641–5646

    Article  CAS  Google Scholar 

  48. Kong LB, Liu M, Lang JW, Luo YC, Kang L (2009) J Electrochem Soc 156:A1000–A1004

    Article  CAS  Google Scholar 

  49. Liu B, Liu B, Wang Q, Wang X, Xiang Q, Chen D, Shen G (2013) ACS Appl Mater Inter 5:10011–10017

    Article  CAS  Google Scholar 

  50. Yang L, Cheng S, Ding Y, Zhu X, Wang ZL, Liu M (2011) Nano Lett 12:321–325

    Article  Google Scholar 

  51. Bello A, Barzegar F, Momodu D, Dangbegnon J, Taghizadeh F, Manyala N (2015) Electrochim Acta 151:386–392

    Article  CAS  Google Scholar 

  52. Ganesh V, Pitchumani S, Lakshminarayanan V (2006) J Power Sources 158:1523–1532

    Article  CAS  Google Scholar 

  53. Liang J, Fan Z, Chen S, Ding S, Yang G (2014) Chem Mater 26:4354–4360

    Article  CAS  Google Scholar 

  54. Xiong W, Gao Y, Wu X, Hu X, Lan D, Chen Y, Pu X, Zeng Y, Su J, Zhu Z (2014) ACS Appl Mater Inter 6:19416–19423

    Article  CAS  Google Scholar 

  55. Fan Z, Yan J, Wei T, Zhi L, Ning G, Li T, Wei F (2011) Adv Funct Mater 21:2366–2375

    Article  CAS  Google Scholar 

  56. Demarconnay L, Raymundo-Piñero E, Béguin F (2011) J Power Sources 196:580–586

    Article  CAS  Google Scholar 

  57. Pell WG, Conway BE (2004) J Power Sources 136:334–345

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (U1404203, 21201010), National Students’ Innovation and Entrepreneurship Training Program of China (201410479011), and University Students’ Innovation Fund Project of Anyang Normal University (ASCX/2014-Z36).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weimin Du or Huan Pang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 132 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, W., Zhu, Z., Xu, Y. et al. High-performance asymmetric full-cell supercapacitors based on CoNi2S4 nanoparticles and activated carbon. J Solid State Electrochem 19, 2177–2188 (2015). https://doi.org/10.1007/s10008-015-2858-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2858-z

Keywords

Navigation