Skip to main content

Advertisement

Log in

Effect of reduction heat treatment in H2 atmosphere on structure and electrochemical properties of activated carbon

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Activated carbon is heat-treated in a H2 atmosphere at 600, 800, and 1000 °C for 1 h, respectively, to be used as electrode material for electrical double layer capacitors (EDLCs). After heat treatment, the surface morphology has no obvious change as compared with the raw material. The specific surface area and pore volume of sample treated at 600 °C have a slightly increase while those of samples treated at higher temperature decrease. XPS and elemental analysis indicate that oxygen containing functional groups on the sample are significantly reduced after treatment. The electrochemical performance of samples was evaluated using cyclic voltammetry and galvanostatic charge–discharge tests in 1 M TEABF4/PC electrolyte. The sample treated at 600 °C shows the optimized electrochemical performance with increase capacitance, enhanced stability, and improved energy density. Its initial specific capacitance is near 127 F/g, and initial coulombic efficiency is about 52 %. At 3.0 V, its energy density reaches 32 Wh/kg and specific capacitance is about 70 F/g at 1 A/g even after 10,000 charge–discharge cycles. Thus, heat treatment at 600 °C under H2 atmosphere is an effective method to improve electrochemical properties of EDLCs based on activated carbon material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Burke A (2007) Electrochim Acta 53:1083–1091

    Article  CAS  Google Scholar 

  2. Simon P, Gogotsi Y (2008) Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  3. Wang Y, Shi ZQ, Huang Y, Ma YF, Wang CY, Chen MM, Chen YS (2009) J Phys Chem C 113:13103–13107

    Article  CAS  Google Scholar 

  4. Frackowiak E, Béguin F (2001) Carbon 39:937–950

    Article  CAS  Google Scholar 

  5. Frackowiak E, Abbas Q, Béguin F (2013) J Energ Chem 22:226–240

    Article  CAS  Google Scholar 

  6. Frackowiak E (2007) Phys Chem Chem Phys 9:1774–1785

    Article  CAS  Google Scholar 

  7. Gamby J, Taberna PL, Simon P, Fauvarque JF, Chesneau M (2001) J Power Sources 101:109–116

    Article  CAS  Google Scholar 

  8. Qu DY (2002) J Power Sources 109:403–411

    Article  CAS  Google Scholar 

  9. Qu DY, Shi H (1998) J Power Sources 74:99–107

    Article  CAS  Google Scholar 

  10. Pandolfo AG, Hollenkamp AF (2006) J Power Sources 157:11–27

    Article  CAS  Google Scholar 

  11. Liu YF, Hu ZH, Ren LW, Yang J, Chen XM (2007) New Carbon Mater 22:355–360

    CAS  Google Scholar 

  12. Gan T, Wu KB (2008) Colloid Surface A: Physicochem Eng Aspects 330:91–95

    Article  CAS  Google Scholar 

  13. Xu B, Wu F, Chen RJ, Cao GP, Chen S, Zhou ZM, Yang YS (2008) Electrochem Commun 10:795–797

    Article  CAS  Google Scholar 

  14. Diez N, Díaz P, Álvarez P, González Z, Granda M, Blanco C, Santamaría R, Menéndez R (2014) Mater Lett 136:214–217

    Article  CAS  Google Scholar 

  15. Wen S, Jung M, Joo OS, Mho SI (2006) Curr Appl Phys 6:1012–1015

    Article  Google Scholar 

  16. Obreja VVN (2008) Phys E 40:2596–2605

    Article  CAS  Google Scholar 

  17. Zhou Y, Ghaffari M, Lin MR, Parsons EM, Liu Y, Wardle BL, Zhang QM (2013) Electrochim Acta 111:608–613

    Article  CAS  Google Scholar 

  18. Baibarac M, Baltog I, Frunza S, Magrez A, Schur D, Zaginaichenko SY (2013) Diam Relat Mater 32:72–82

    Article  CAS  Google Scholar 

  19. Wang JB, Yang XQ, Wu DC, Fu RW, Dresselhaus MS, Dresselhaus G (2008) J Power Sources 185:589–594

    Article  CAS  Google Scholar 

  20. Li J, Wang XY, Huang QH, Gamboa S, Sebastian PJ (2006) J Power Sources 158:784–788

    Article  CAS  Google Scholar 

  21. Zeng XH, Wu DC, Fu RW, Lai HJ (2008) Mater Chem Phys 112:1074–1077

    Article  CAS  Google Scholar 

  22. Wang JC, Kaskel S (2012) J Mater Chem 22:23710–23725

    Article  CAS  Google Scholar 

  23. Lewandowski A, Galinski M (2007) J Power Sources 173:822–828

    Article  CAS  Google Scholar 

  24. Chen H, Zhou M, Wang Z, Zhao SY, Guan SY (2014) Electrochim Acta 148:187–194

    Article  CAS  Google Scholar 

  25. Zhang HY, Ye J, Ye YP, Chen YM, He CH, Chen YT (2014) Electrochim Acta 138:311–317

    Article  CAS  Google Scholar 

  26. Yin J, Zhang D, Zhao JQ, Wang XL, Zhu H, Wang C (2014) Electrochim Acta 136:504–512

    Article  CAS  Google Scholar 

  27. Lai YQ, Li J, Song HS, Zhang ZA, Li J, Liu YX (2007) J Cent South Univ Technol 14:633–637

    Article  CAS  Google Scholar 

  28. Naoi K (2010) Fuel Cells 10:825–833

    Article  CAS  Google Scholar 

  29. Hahn M, Würsig A, Gallay R, Novák P, Kötz R (2005) Electrochem Commun 7:925–930

    Article  CAS  Google Scholar 

  30. Ishimoto S, Asakawa Y, Shinya M, Naoi K (2009) J Electrochem Soc 156:A563–A571

    Article  CAS  Google Scholar 

  31. Azaïs P, Duclaux L, Florian P, Massiot D, Lillo-Rodenas MA, Linares-Solano A, Peres JP, Jehoulet C, Béguin F (2007) J Power Sources 171:1046–1053

    Article  Google Scholar 

  32. Figueiredo JL, Pereira MFR, Freitas MMA, Orfao JJM (1999) Carbon 37:1379–1389

    Article  CAS  Google Scholar 

  33. Menéndez JA, Phillips J, Xia B, Radovic LR (1996) Langmuir 12:4404–4410

    Article  Google Scholar 

  34. Ruiz V, Blanco C, Raymundo-Piñero ER, Khomenko V, Béguin F, Santamaría R (2007) Electrochim Acta 52:4969–4973

    Article  CAS  Google Scholar 

  35. Shin S, Jang J, Yoon SH, Mochida I (1997) Carbon 35:1739–1743

    Article  CAS  Google Scholar 

  36. Shafeeyan MS, Daud WMAW, Houshmand A, Shamiri A (2010) J Anal Appl Pyrol 89:143–151

    Article  CAS  Google Scholar 

  37. Rose M, Korenblit Y, Kockrick E, Borchardt L, Oschatz M, Kaskel S, Yushin G (2011) Small 7:1108–1117

    Article  CAS  Google Scholar 

  38. Pittman CU Jr, Jiang W, Yue ZR, Gardner S, Wang L, Toghiani H, Leon Y, Leon CA (1999) Carbon 37:1797–1807

    Article  CAS  Google Scholar 

  39. Moreno-Castilla C, Lopez-Ramon MV, Carrasco-Marın F (2000) Carbon 38:1995–2001

    Article  CAS  Google Scholar 

  40. Zhou JH, Sui ZJ, Zhu J, Li P, Chen D, Dai YC, Yuan WK (2007) Carbon 45:785–796

    Article  CAS  Google Scholar 

  41. Okpalugo TIT, Papakonstantinou P, Murphy H, McLaughlin J, Brown NMD (2005) Carbon 43:153–161

    Article  CAS  Google Scholar 

  42. Kundu S, Wang YM, Xia W, Muhler M (2008) J Phys Chem C 112:16869–16878

    Article  CAS  Google Scholar 

  43. Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C (2008) Carbon 46:833–840

    Article  CAS  Google Scholar 

  44. Rositani F, Antonucci PL, Minutoli M, Giordano N, Villari A (1987) Carbon 25:325–332

    Article  CAS  Google Scholar 

  45. Zhu HM, Yan JH, Jiang XG, Lai YE, Cen KF (2008) J Hazard Mater 153:670–676

    Article  CAS  Google Scholar 

  46. Chen J, Hamon MA, Hu H, Chen YS, Rao AM, Eklund PC, Haddon RC (1998) Science 282:95–98

    Article  CAS  Google Scholar 

  47. Luo HX, Shi ZJ, Li NQ, Gu ZN, Zhuang QK (2001) Anal Chem 73:915–920

    Article  CAS  Google Scholar 

  48. Kim UJ, Furtado CA, Liu XM, Chen GG, Eklund PC (2005) J Am Chem Soc 127:15437–15445

    Article  CAS  Google Scholar 

  49. Acik M, Mattevi C, Gong C, Lee G, Cho K, Chhowalla M, Chabal YJ (2010) ACS Nano 4:5861–5868

    Article  CAS  Google Scholar 

  50. Oh SY, Yoo DI, Shin Y, Seo G (2005) Carbohyd Res 340:417–428

    Article  CAS  Google Scholar 

  51. Fanning PE, Vannice MA (1993) Carbon 31:721–730

    Article  CAS  Google Scholar 

  52. Pradhan BK, Sandle NK (1999) Carbon 37:1323–1332

    Article  CAS  Google Scholar 

  53. Starsinic M, Taylor RL, Walker PL Jr, Painter PC (1983) Carbon 21:69–74

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National High Technology Research and Development Program of China (863) (2013AA050905), the National Nature Science Foundation of China (51172160, 51372168).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-qiang Shi or Cheng-yang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Tt., Shi, Zq., Li, Mw. et al. Effect of reduction heat treatment in H2 atmosphere on structure and electrochemical properties of activated carbon. J Solid State Electrochem 19, 1437–1446 (2015). https://doi.org/10.1007/s10008-015-2767-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2767-1

Keywords

Navigation