Skip to main content
Log in

A facile fabrication of MnO2/graphene hybrid microspheres with a porous secondary structure for high performance supercapacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

MnO2/graphene nanosheets (MnO2/GNs) hybrid composite can be prepared by spray-drying technique with either graphene oxide (GO) or hydrazine-reduced graphene as precursor. The characterization results of the as-synthesized composites indicate that MnO2 and GNs are uniformly distributed and intertangled forming porous microspheres in a diameter of 2–4 μm. This special secondary structure is beneficial for an intimate contact between MnO2 and GNs accounting for improved conductivity. In addition, the high surface area and abundant porosity enables aqueous electrolyte to penetrate deeply inside the hybrid microspheres, and facilitating the Na+ insertion/release process, which increases the utilization of active component resulting in enhanced supercapacitance. MnO2/graphene hybrid microspheres exhibit a good cycling performance as the intertangled graphene buffers the volume change of MnO2 during charge–discharge cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang LL, Zhao XS (2009) Chem Soc Rev 38:2520–2531

    Article  CAS  Google Scholar 

  2. Miller JR, Simon P (2008) Science 321:651–652

    Article  CAS  Google Scholar 

  3. Huang Y, Liang JJ, Chen YS (2012) Small 8:1805–1834

    Article  CAS  Google Scholar 

  4. Pech D, Brunet M, Durou H, Huang P, Mochalin V, Gogotsi Y, Taberna PL, Simon P (2010) Nat Nanotechnol 5:651–654

    Article  CAS  Google Scholar 

  5. Chen YM, Cai JH, Huang YS, Lee KY, Tsai DS (2011) Nat Nanotechnol 22:355708–355710

    Article  Google Scholar 

  6. Fan LZ, Hu YS, Maier J, Adelhelm P, Smarsly B, Antonietti M (2007) Adv Funct Mater 17:3083–3087

    Article  CAS  Google Scholar 

  7. Fischer AE, Pettigrew KA, Rolison DR, Stroud RM, Long JW (2007) Nano Lett 7:281–286

    Article  CAS  Google Scholar 

  8. Simon P, Gogotsi Y (2008) Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  9. Li SH, Liu QH, Qi L, Lu LH, Wang HY (2012) Chin J Anal Chem 40:339–346

    Article  CAS  Google Scholar 

  10. Jin Y, Chen HY, Chen MH, Liu N, Li QW (2013) ACS Appl Mater Interfaces 5:3408–3416

    Article  CAS  Google Scholar 

  11. Chen W, Rakhi RB, Hu L, Xie X, Cui Y, Alshareef HN (2011) Nano Lett 11:5165–5172

    Article  CAS  Google Scholar 

  12. Peng HL, Peng X, Liu BR, Wu CZ, Xie Y, Yu GH (2013) Nano Lett 13:2151–2157

    Article  CAS  Google Scholar 

  13. Li ZP, Wang JQ, Liu S, Liu XH, Yang SY (2011) J Power Sources 196:8160–8165

    Article  CAS  Google Scholar 

  14. Huang HJ, Wang X (2011) Nanoscale 3:3185–3192

    Article  CAS  Google Scholar 

  15. Liu R, Lee SB (2008) J Am Chem Soc 130:2942–2943

    Article  CAS  Google Scholar 

  16. Xu CJ, Li BH, Du HD, Kang FY, Zeng YQ (2008) J Power Sources 180:664–670

    Article  CAS  Google Scholar 

  17. Xu M, Kong L, Zhou W, Li H (2007) J Phys Chem C 111:19141–19147

    Article  CAS  Google Scholar 

  18. Yan J, Fan ZJ, Tong W, Qian WZ, Zhang ML, Wei FJ (2010) Carbon 48:3825–3833

    Article  CAS  Google Scholar 

  19. Yu F, Zhang JJ, Yang YF, Song GZ (2009) J Power Sources 189:794–797

    Article  CAS  Google Scholar 

  20. Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  21. Shen J, Hu Y, Shi M, Li N, Ma H, Ye M (2010) J Phys Chem C 114:1498–1503

    Article  CAS  Google Scholar 

  22. Chen H, Zhou SX, Chen M, Wu M (2012) J Mater Chem 22:25207–25216

    Article  CAS  Google Scholar 

  23. Zhang J, Jiang J, Zhao XS (2011) J Phys Chem C 115:6448–6454

    Article  CAS  Google Scholar 

  24. Chen H, He J, Zhang C, He H (2007) J Phys Chem C 111:18033–18038

    Article  CAS  Google Scholar 

  25. Zhu JY, He JH (2012) ACS Appl Mater Interfaces 4:1770–1776

    Article  CAS  Google Scholar 

  26. Gamby J, Taberna P, Simon P, Fauvarque J, Chesneau M (2001) J Power Sources 101:109–116

    Article  CAS  Google Scholar 

  27. Girija TC, Sangaranarayanan MV (2006) J Power Sources 156:705–711

    Article  CAS  Google Scholar 

  28. Zhang H, Zhang M (2008) Mater Chem Phys 108:184–187

    Article  CAS  Google Scholar 

  29. Mao L, Zhang K, Chan H, Wu J (2012) J Mater Chem 22:1845–1851

    Article  CAS  Google Scholar 

  30. Huang ZD, Zhang B, Liang R, Zheng Q, Oh SW, Lin XY, Yousefi N, Kim JK (2012) Carbon 50:4239–4251

    Article  CAS  Google Scholar 

  31. Chen S, Zhu JW, Wu XD, Han QF, Wang X (2010) ACS Nano 4:2822–2830

    Article  CAS  Google Scholar 

  32. Chen WC, Wen TC (2003) J Power Sources 117:273–282

    Article  CAS  Google Scholar 

  33. Chen XY, Chen C, Zhang ZJ, Xie DH, Deng X, Liu JW (2013) J Power Sources 230:50–58

    Article  CAS  Google Scholar 

  34. Yu G, Hu L, Vosgueritchian M, Wang H, Xie X, McDonough JR, Cui X, Cui Y, Bao Z (2011) Nano Lett 11:2905–2911

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21271107), Tianjin Natural Science Foundation (10JCYBJC26200), and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinxing Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, Y., Yu, Z., Xie, C. et al. A facile fabrication of MnO2/graphene hybrid microspheres with a porous secondary structure for high performance supercapacitors. J Solid State Electrochem 19, 949–956 (2015). https://doi.org/10.1007/s10008-014-2691-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2691-9

Keywords

Navigation