Skip to main content
Log in

Redox-induced solid-solid state transformation of tetrathiafulvalene (TTF) microcrystals into mixed-valence and π-dimers in the presence of nitrate anions

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Tetrathiafulvalene (TTF), when dissolved in an organic solvent, can be electrochemically oxidized to the cation radical TTF+• and the dication TTF2+. In aqueous Co(NO3)2 electrolyte media, TTF chemically modified electrodes undergo a very different TTF to TTF+•pathway to give two solid-solid state conversion reactions. Initially, the mixed-valent (TTF)2NO3, containing (TTF-TTF+•) as a dimeric cation, is formed, which in turn can be oxidized to (TTF)2(NO3)2, containing the (TTF+•)2 dimeric cation. These processes occur by nucleation-growth mechanisms on glassy carbon, platinum, gold and indium-tin oxide electrode substrates containing adhered TTF solid. The products have been characterized by spectroscopic and voltammetric methods and (TTF)2(NO3)2 also has been synthesized by reaction of TTF+•, prepared by bulk electrolysis in acetonitrile with (Bu4N)NO3, using the appropriate stoichiometric molar ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Siedle AR, Candela GA, Finnegan TF, Van Duyne RP, Cape T, Kokoszka GF, Woyciejes PM, Hashmall JA (1981) Copper and gold metallotetrathiaethylenes. Inorg Chem 20:2635–2640

    Article  CAS  Google Scholar 

  2. Segura JL, Martín N (2001) New concepts in tetrathiafulvalene chemistry. Angew Chem Int Ed 40:1372–1409

    Article  CAS  Google Scholar 

  3. Scott BA, La Placa SJ, Torrance JB, Silverman BD, Welber B (1977) The crystal chemistry of organic metals. Composition, structure, and stability in the tetrathiafulvalinium-halide systems. J Am Chem Soc 99:6631–6639

    Article  CAS  Google Scholar 

  4. Kim YI, Hatfield WE (1991) Synthesis and characterization of tetrathiafulvalene charge-transfer compounds with copper halides. Inorg Chim Acta 189:237–241

    Article  CAS  Google Scholar 

  5. Kim YI, Hatfield WE (1991) Electrical, magnetic and spectroscopic properties of tetrathiafulvalene charge transfer compounds with iron, ruthenium, rhodium and iridium halides. Inorg Chim Acta 188:15–24

    Article  CAS  Google Scholar 

  6. Kim M, Kim Y, Moon S (1996) Bull Kor Chem Soc 17:1167

    CAS  Google Scholar 

  7. Wooster TJ, Bond AM, Honeychurch MJ (2003) An analogy of an ion-selective electrode sensor based on the voltammetry of microcrystals of tetracyanoquinodimethane or tetrathiafulvalene adhered to an electrode surface. Anal Chem 75:586–592

    Article  CAS  Google Scholar 

  8. Wooster TJ, Bond AM, Honeychurch MJ (2001) Resistance transitions detected by analysis of the voltammetry of tetrathiafulvalene microparticles adhered to electrode surfaces under conditions of dynamic resistance compensation. Electrochem Commun 3:746–752

    Article  CAS  Google Scholar 

  9. Gómez L, Rodríguez-Amaro R (2009) Nucleation and growth of thin films of the organic conductor TTF-iodide over glassy carbon. Electrochem Spectroelectrochemical Study, Langmuir 25:4799–4803

    Google Scholar 

  10. Shaw SJ, Marken F, Bond AM (1996) Detection of new features associated with the oxidation of microcrystalline tetrathiafulvalene attached to gold electrodes by the simultaneous application of electrochemical and quartz crystal microbalance techniques. Electroanalysis 8:732–741

    Article  CAS  Google Scholar 

  11. Somoano RB, Gupta A, Hadek V, Datta T, Jones M, Deck R, Hermann AM (1975) The electrical and magnetic properties of (TTF)(I)0.71. J Chem Phys 63:4970–4976

  12. Kathirgamanathan P, Mazid MA, Rosseinsky DR (1982) The highly conductive nonstoicheiometric tetrathiafulvalene nitrate: composition, conductivity, and structure. J Chem Soc Perkin Trans 2:593–596

    Article  Google Scholar 

  13. Li Q, Lu J, Boas JF, Traore DAK, Wilce MCJ, Huang F, Martin LL, Ueda T, Bond AM (2012) Spontaneous redox synthesis of the charge transfer material TTF4[SVMo11O40]. Inorg Chem 51:12929–12937

  14. Bond AM (1994) Past, present and future contributions of microelectrodes to analytical studies employing voltammetric detection. A Review, Analyst 119:1R–21R

  15. Bond AM (2002) Broadening electrochemical horizons: principles and illustration of voltammetric and related techniques, Oxford University Press

  16. Spruell JM, Coskun A, Friedman DC, Forgan RS, Sarjeant AA, Trabolsi A, Fahrenbach AC, Barin G, Paxton WF, Dey SK, Olson MA, Benítez D, Tkatchouk E, Colvin MT, Carmielli R, Caldwell ST, Rosair GM, Hewage SG, Duclairoir F, Seymour JL, Slawin AMZ, Goddard WA, Wasielewski MR, Cooke G, Stoddart JF (2010) Highly stable tetrathiafulvalene radical dimers in [3] catenanes. Nat Chem 2:870–879

    Article  CAS  Google Scholar 

  17. Garcia-Yoldi II, Miller JS, Novoa JJ (2009) Theoretical study of the electronic structure of [tetrathiafulvalene]2 2+ dimers and their long, intradimer multicenter bonding in solution and the solid state. J Phys Chem A 113:484–492

  18. Lyskawa J, Salle M, Balandier J‐Y, Le Derf F, Levillain E, Allain M, Viel P, Palacin S (2006) Monitoring the formation of TTF dimers by Na+ complexation. Chem Commun 2233–2235

  19. Ziganshina AY, Ko YH, Jeon WS, Kim K (2004) Stable π-dimer of a tetrathiafulvalene cation radical encapsulated in the cavity of cucurbit [8] uril. Chem Commun 806–807

  20. Kim YI, Hatfield WE (1993) Electrical, magnetic and spectroscopic properties of (TTF)5Fe(NO3)3. Inorg Chim Acta 204:261–263

  21. Bozio R, Girlando A, Pecile D (1977) Infrared and Raman spectra of TTF and TTF-d4. Chem Phys Lett 52:503–508

  22. Nie S, Yu N-T (1991) Surface-enhanced near-infrared fourier transform Raman scattering of tetrathiafulvalene adsorbed on silver powder. J Raman Spectrosc 22:489–495

    Article  CAS  Google Scholar 

  23. Van Duyne RP, Haushalter JP (1984) Resonance Raman spectroelectrochemistry of semiconductor electrodes: the photooxidation of tetrathiafulvalene at n-gallium arsenide (100) in acetonitrile. J Phys Chem 88:2446–2451

    Article  Google Scholar 

  24. Paxton WF, Kleinman SL, Basuray AN, Stoddart JF, Van Duyne RP (2011) Surface-enhanced Raman spectroelectrochemistry of TTF-modified self-assembled monolayers. J Phys Chem Lett 2:1145–1149

    Article  CAS  Google Scholar 

  25. Joy VT, Srinivasan TKK (2000) SERS studies on tetrathiafulvalene, diphenyltetrathiafulene and octahydrodibenzotetrathiafulvalene. Chem Phys Lett 328:221–226

    Article  CAS  Google Scholar 

  26. Leheny AR, Rossetti R, Brus LE (1985) Molecular resonance Raman observation of tetrathiafulvalene oxidation by colloidal platinum crystallites. J Phys Chem 89:211–213

    Article  CAS  Google Scholar 

  27. Berlinsky AJ, Hoyano Y, Weiler L (1977) Raman spectra of tetrathiofulvalene (TTF). Chem Phys Lett 45:419–421

    Article  CAS  Google Scholar 

  28. Kathirgamanathan P, Mazid MA, Rosseinsky DR (1982) The highly conductive nonstoicheiometric tetrathiafulvalene nitrate: composition, conductivity, and structure. J Chem Soc Perkin Trans 2:593–596

    Article  Google Scholar 

  29. Chambers JQ, Kaufman FB, Nichols KH (1982) Electrochemistry of tetrathiafulvalene polymers, anion effects on charge transport through donor substituted thin polymer films. J Electroanal Chem Interfacial Electrochem 142:277–287

  30. Inzelt G, Chambers JQ, Kaufman FB (1983) Electrochemistry of tetrathiafulvalene polymers: electron spin resonance of polymer film electrodes. J Electroanal Chem Interfacial Electrochem 159:443–448

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lisandra L. Martin or Alan M. Bond.

Additional information

A contribution to the celebration of the 65th birthday of our colleague and friend, Stephen Fletcher.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1.06 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adeel, S.M., Martin, L.L. & Bond, A.M. Redox-induced solid-solid state transformation of tetrathiafulvalene (TTF) microcrystals into mixed-valence and π-dimers in the presence of nitrate anions. J Solid State Electrochem 18, 3287–3298 (2014). https://doi.org/10.1007/s10008-014-2656-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2656-z

Keywords

Navigation