Skip to main content

Advertisement

Log in

An activated carbon supercapacitor analysis by using a gel electrolyte of sodium salt-polyethylene oxide in an organic mixture solvent

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A gel electrolyte of sodium bis(trifluoromethanesulfonyl)imide (NaTFSI)-polyethylene oxide (PEO) in an organic solvent mixture has been prepared and examined for supercapacitor applications by using activated carbon electrodes. The solvent was a mixture of propylene carbonate, dimethyl carbonate, and ethylene carbonate at equal molar ratio, and also, a propylene carbonate-based gel was used for a comparison. The polymer-salt interaction was viewed by infrared spectral study. The cells have been characterized in a two-electrode type using linear sweep voltammetry, cyclic voltammetry, galvanostatic cycling, and impedance techniques at 22 °C. The voltammograms evidence symmetry and reversibility of the cells. The ternary gel has shown better electrochemical performances. Moreover, the cell operative potential window was found to be stable at 2.5 V with high specific capacitance and also a good efficiency at low charge rate. The typical obtained specific capacitance, real power, and energy density values are 24 F g−1, 0.52 kW kg−1, and 18.7 Wh kg−1, respectively, which may be viewable for a compact capacitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chandrasekaran R, Koh M, Yamauchi A, Ishikawa M (2010) J Power Sources 195:662–666

    Article  CAS  Google Scholar 

  2. Jung H, Venugopal N, Scrosati B, Sun Y (2013) J Power Sources 221:266–271

    Article  CAS  Google Scholar 

  3. Cericola D, Kötz R (2012) Electrochim Acta 72:1–17

    Article  CAS  Google Scholar 

  4. Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S (2011) Adv Mater 23:4828–4850

    Article  CAS  Google Scholar 

  5. Xu W, Chen X, Ding F, Xiao J, Wang D, Pan A, Xiaohong JZ, Li S, Padmaperuma AB, Zhang J (2012) J Power Sources 213:304–316

    Article  CAS  Google Scholar 

  6. Sivakkumar SR, Pandolfo AG (2012) Electrochim Acta 65:280–287

    Article  CAS  Google Scholar 

  7. Chandrasekaran R, Ohzawa Y, Nakajima T, Koh M, Aoyama H (2006) J New Mater Electrochem Syst 9:181–189

    CAS  Google Scholar 

  8. Dahbi M, Violleau D, Ghamouss F, Jacquemin J, TranVan F, Lemordant D, Anouti M (2012) Ind Eng Chem Res 51:5240–5245

    Article  CAS  Google Scholar 

  9. Song JY, Wang YY, Wan CC (1999) J Power Sources 77:183–197

    Article  CAS  Google Scholar 

  10. Yang PX, Cui WY, Li LB, Liu L, Zhong M (2012) Solid State Sci 14:598–606

    Article  CAS  Google Scholar 

  11. Noto VD, Lavina S, Giffin GA, Negro E, Scrosati B (2011) Electrochim Acta 57:4–13

    Article  Google Scholar 

  12. Meng CZ, Liu CH, Chen LZ, Hu CH, Fan SS (2010) Nano Lett 10(10):4025–4031

    Article  CAS  Google Scholar 

  13. Gao HC, Xiao F, Ching CB, Duan HW (2012) Appl Mater Interfaces 4(12):7019–7025

    Article  Google Scholar 

  14. Choi BG, Chang SJ, Kang HW, Park CP, Kim HJ, Hong WH, Lee S, Huh YS (2012) Nanoscale 4(16):4983–4988

    Article  CAS  Google Scholar 

  15. Nohara S, Wada H, Furukawa N, Noue H, Wakura C (2006) Res Chem Intermed 32(5–6):491–495

    Article  CAS  Google Scholar 

  16. Peterson SB, Whitacre JF, Apt J (2011) Environ Sci Technol 45:1792–1797

    Article  CAS  Google Scholar 

  17. Choi N, Chen Z, Freunberger SA, Ji X, Sun Y, Amine K, Yushin G, Nazar LF, Cho J, Bruce PG (2012) Angew Chem Int Ed 51:9994–10024

    Article  CAS  Google Scholar 

  18. Yang Z, Zhang J, Kintner-Meyer MCW, Lu X, Choi D, Lemmon JP, Liu J (2011) Chem Rev 111:3577–3613

    Article  CAS  Google Scholar 

  19. Burke A, Miller M (2010) Electrochim Acta 55:7538–7548

    Article  CAS  Google Scholar 

  20. Mortazavi M, Deng J, Shenoy VB, Medheka NV (2013) J Power Sources 225:207–214

    Article  CAS  Google Scholar 

  21. Stolwijk NA, Wiencierz M, Heddier C, Kosters J (2012) J Phys Chem B 116:3065–3074

    Article  CAS  Google Scholar 

  22. Chandrasekaran R, Sathiyamoorthi R, Selladurai S (2009) Ionics 15:703–710

    Article  CAS  Google Scholar 

  23. Chen Z, Augustyn V, Wen J, Zhang Y, Shen M, Dunn B, Lu Y (2011) Adv Mater 23:791–795

    Article  CAS  Google Scholar 

  24. Yin J, Qi L, Wang H (2012) ACS Appl Mater Interfaces 4:2762–2768

    Article  CAS  Google Scholar 

  25. Huang C, Wu C, Hou S, Kuo P, Hsieh C, Teng H (2012) Adv Funct Mater 22(22):4677–4685

    Article  CAS  Google Scholar 

  26. Saito Y, Okano M, Kubota K, Sakai T, Fujioka J, Kawakami T (2012) J Phys Chem B 116:10089–10097

    Article  CAS  Google Scholar 

  27. Sharma JP, Yamada K, Sekhon SS (2012) Macromol Symp 315:188–197

    Article  CAS  Google Scholar 

  28. Li M, Yang L, Fang S, Dong S, Hirano S, Tachibana K (2012) Polym Int 61:259–264

    Article  CAS  Google Scholar 

  29. Wang J, Wu Y, Xuan X, Wang H (2002) Spectrochim Acta A 58:2097–2104

    Article  Google Scholar 

  30. Deepa M, Agnihotry SA, Gupta D, Chandra R (2004) Electrochim Acta 49:373–383

    Article  CAS  Google Scholar 

  31. Kumar D, Hashmi SA (2010) Solid State Ionics 181:416–423

    Article  CAS  Google Scholar 

  32. Moshkovich M, Cojocaru M, Gottlieb HE, Aurbach D (2001) J Electroanal Chem 497:84–96

    Article  CAS  Google Scholar 

  33. Chandrasekaran R, Soneda Y, Yamashita J, Kodama M, Hatori H (2008) J Solid State Electrochem 12:1349–1355

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank all of our group researchers Raúl Díaz Delgado, Rebeca Marcilla Enrique García, Susana Vaquero Morata, Suheda Isikli, Laura Sanz Rubio, and Teresa González de Chávez Capilla for their timely help, and RC thanks Marie Curie Amarout award and its financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandrasekaran Ramasamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramasamy, C., Palma del vel, J. & Anderson, M. An activated carbon supercapacitor analysis by using a gel electrolyte of sodium salt-polyethylene oxide in an organic mixture solvent. J Solid State Electrochem 18, 2217–2223 (2014). https://doi.org/10.1007/s10008-014-2466-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2466-3

Keywords

Navigation