Skip to main content

Advertisement

Log in

Comparative performance of LiMn2O4 spinel compositions with carbon nanotubes and graphite in Li prototype battery

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

We reported previously the superiority of electrochemical characteristics of the mechanical mixtures of micrometer LiMn2O4 spinel with multiwall carbon nanotubes (MCNT) over those of spinel compositions with natural graphite in the prototypes of the Li-ion batteries. In the presented work, we extended the investigation of the kinetic and interfacial characteristics of the spinel in the redox reaction with the Li ion. Slow-rate scan cyclic voltammetry and impedance spectroscopy were used. Carbon electroconductive fillers, their nature, and particle sizes play the key role in the efficiency of the electrochemical transformation of spinel in Li-ion batteries. Electrodes based on the composition of the spinel and MCNT show a good cycling stability and efficiency at the discharge rate of 2C. Chemical diffusion coefficients of Li ion, which were determined in spinel composite with MCNT and graphite near potentials of peak activity in deintercalation/intercalation processes, change within one order of 10−12 cm2 s−1. The value of this chemical diffusion coefficient for the composition of the spinel with MCNT and with graphite change within one order of 10−12 cm2 s−1. The data of the impedance spectroscopy shows that the resistance of surface films on the spinel (R s) is low and does not considerably differ from R s in composites of the spinel with MCNT and graphite. The investigation shows that the resistance of charge transport (R ct) through the boundary of surface film/spinel composite is dependent on the conductive filler. Value of R ct in spinel electrode decreases by the factor of thousand in the presence of carbon filler. Exchange current of spinel electrode increases from the order of 10−7 to 10−4 A cm−2 under the influence of MCNT. At the potentials of maximum activity in deintercalation processes, exchange current of spinel composite electrode with MCNT is 2.2–3.0 times more than one of the composite with graphite. Determining role of the resistance of charge transport in electrode processes of spinel is established. The value of R ct is dependent on the resistance in contacts between spinel particles and also between particles and current collectors. Contact resistance decreases under the influence of MCNT with more efficiency than under the influence of graphite EUZ-M because of small the size of its particles with high surface area of the MCNT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Xia H, Lai M, Lu L (2010) J Mater Chem 20:6896–6902

    Article  CAS  Google Scholar 

  2. Patey TJ, Buchel R, Nakayama P, Novak P (2009) Phys Chem Chem Phys 11:3756–3761

    Article  CAS  Google Scholar 

  3. Kim DK, Muralidharan P, Lee H-W, Ruffo R, Yang Y, Chan CK, Peng H, Huggins RA, Cui Y (2010) Nano Lett 8:3948–3952

    Article  Google Scholar 

  4. Hosono E, Kudo T, Honma I, Matsuda H, Zhou H (2009) Nano Lett 9:1045–1051

    Article  CAS  Google Scholar 

  5. Tang W, Liu LL, Tian S, Li L, Li LL, Yue YB, Bai Y, Wu YP, Zhu K, Holze R (2011) Electrochem Commun 13:1159–1162h

    Article  CAS  Google Scholar 

  6. Ding Y-L, Xie J, Cao G-S, Zhum T-J, Yu H-M, Zhao X-B (2011) Adv Funct Mater 21:348–355

    Article  CAS  Google Scholar 

  7. Patey TJ, Buchel R, Ng SH, Krumeich F, Pratsini SE, Novak P (2009) J Power Sources 189:14017–14024

    Google Scholar 

  8. Xia H, Ragavendran KR, Xie J, Lu L (2012) J Power Sources 21:228–234

    Google Scholar 

  9. Han SY, Kim IY, Jo KY, Hwang S-J (2012) J Phys Chem 116:7269–7279

    Article  CAS  Google Scholar 

  10. Fu Y, Wan Y, Xia H, Wang X (2012) J Power Sources 213:338–342

    Article  CAS  Google Scholar 

  11. Zhao X, Hayner CM, Kung HH (2011) J Mater Chem 21:17297–17303

    Article  CAS  Google Scholar 

  12. Peskov R, Apostolova R, Shembel E, Danilov M (2013) Abstr 14th Int Conf ABAF Adv Batter Accumulators Fuel Cells Brno 48–51

  13. Kovacheva D, Markovsky B, Salitra G, Talyosef Y, Gorova M, Levi E, Riboch M, Kim H-J, Aurbach D (2006) Electrochim Acta 50:5553–5560

    Article  Google Scholar 

  14. Melejik AV, Sementzov UI, Janchenko VV (2005) J Appl Chem 78:938–944 (In Russian)

    Google Scholar 

  15. Rougier A, Striebl KA, Wen SJ, Cairns EJ (1998) J Electrochem Soc 145:1975–1980

    Article  Google Scholar 

  16. Hwang KH, Lee SH, Joo S (1994) J Electrochem Soc 141:3296–3299

    Article  CAS  Google Scholar 

  17. Shokoohi FK, Tarascon J-M, Nilkens BJ (1991) J Appl Phys Lett 59:1260–1263

    Article  CAS  Google Scholar 

  18. Jang Dong H, Oh Seung M (1998) Electrochim Acta 43:1023–1029

    Article  Google Scholar 

  19. Apostolova RD, Kirsanova IV, Shembel EM (2006) Electrochemistry 42:203–212 (In Russian)

    Google Scholar 

  20. Hwang BJ, Santhanam R, Liu DG (2001) J Power Sources 97–98:443–446

    Article  Google Scholar 

  21. Eftekhari A (2003) Electrochim Acta 48:2831–2839

    Article  CAS  Google Scholar 

  22. Ohzuku T, Kitagava M, Hirai T (1999) J Electrochem Soc 146:4339–4347

    Article  Google Scholar 

  23. Abiko H, Hibino M, Kudo T (2000) Solid State Ionics 135:115–120

    Article  CAS  Google Scholar 

  24. Aurbach D, Levi MD, Gamulski K, Markovsky B, Salitra G, Levi E, Heider U, Heider L, Oesten R (1999) J Power Sources 81–82:472–479

    Article  Google Scholar 

  25. Striebel KA, Rougier A, Horne CR, Reade RP, Cairns EJ (1990) J Electrochem Soc 137:769–775

    Article  Google Scholar 

  26. Galus Z (1994) Fundamentals of electrochemical analysis. Ellis Horwood, Chichester

    Google Scholar 

  27. Zhang D, Popov Branko NJ (2000) Electrochem Soc 147:831–838

    Article  CAS  Google Scholar 

  28. Das SR, Majumber SB, Katiar RS (2005) J Power Sources 139:262–268

    Article  Google Scholar 

  29. Chung Kyung Y, Kim K-B (2002) J Electrochem Soc 149:A79–A85

    Article  Google Scholar 

  30. Hjelm AK, Eriksson T, Lindbergh G (2002) Electrochim Acta 48:171–179

    Article  CAS  Google Scholar 

  31. Zhang SS, Xu K, Jou TR (2004) Electrochim Acta 49:1057–1061

    Article  CAS  Google Scholar 

  32. Zhang SS, Ding MS, Xu K, Allen J, Jow TR (2001) Electrochem Solid-State Lett 4:A206–A208

    Article  CAS  Google Scholar 

  33. Zhang SS, Xu K, Jow TR (2002) Electrochem Solid-State Lett 5:A92–A94

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Shembel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Apostolova, R., Peskov, R. & Shembel, E. Comparative performance of LiMn2O4 spinel compositions with carbon nanotubes and graphite in Li prototype battery. J Solid State Electrochem 18, 2315–2324 (2014). https://doi.org/10.1007/s10008-013-2350-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2350-6

Keywords

Navigation