Skip to main content
Log in

Electrochemical impedance analysis of methanol oxidation on carbon nanotube-supported Pt and Pt-Ru nanoparticles

  • ORIGINAL ARTICLE
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) are employed to investigate methanol oxidation reactions on single-walled carbon nanotube-supported platinum (Pt) and platinum–ruthenium (Pt-Ru) nanoparticles. EIS and CV measurements show consistent results: Pt catalyst supported on single-walled carbon nanotubes possesses higher catalytic activity for methanol oxidation than that on carbon black. Additionally, semicircles in the second quadrant of the Nyquist diagrams are observed for methanol oxidation on all types of catalytic nanoparticles when applying an electrical potential of 600 mV, which indicates the occurrence of negative resistance during electrocatalytic methanol oxidations. However, all impedance spectra show positive resistance at other electrode potentials (e.g., 300, 400, and 800 mV). Electrocatalytic characteristics of all catalysts are further analyzed by equivalent circuit simulations. We propose that intermediate coverage on the catalyst surface and subsequently the oscillation of nonlinear electrochemical methanol oxidations lead to the occurrence of negative resistance at 600 mV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hsu NY, Yen SC, Jeng KT, Chien CC (2006) J Power Sources 161(1):232–239

    Article  CAS  Google Scholar 

  2. Danaee I, Jafarian M, Forouzandeh F, Gobal F, Mahjani MG (2009) Int J Hydrogen Energy 34(2):859–869

    Article  CAS  Google Scholar 

  3. Liu H, Song C, Zhang L, Zhang J, Wang H, Wilkinson DP (2006) J Power Sources 155(2):95–110

    Article  CAS  Google Scholar 

  4. Seland F, Tunold R, Harrington DA (2006) Electrochim Acta 51(18):3827–3840

    Article  CAS  Google Scholar 

  5. Kabbabi A, Faure R, Durand R, Beden B, Hahn F, Leger JM, Lamy C (1998) J Electroanal Chem 444(1):41–53

    Article  CAS  Google Scholar 

  6. Hsing IM, Wang X, Leng Y-J (2002) J Electrochem Soc 149(5):A615–A615

    Article  CAS  Google Scholar 

  7. Wang H, Baltruschat H (2007) J Phys Chem C 111(19):7038–7048

    Article  CAS  Google Scholar 

  8. Murthy A, Manthiram A (2012) J Phys Chem C 116(5):3827–3832

    Article  CAS  Google Scholar 

  9. Orazem ME, Tribollet B (2008) Electrochim Acta 53(25):7360–7366

    Article  CAS  Google Scholar 

  10. Orazem ME, Roy SK (2006) ECS Trans 3(1):1031–1040

    Article  Google Scholar 

  11. Müller JT, Urban PM, Hölderich WF (1999) J Power Sources 84(2):157–160

    Article  Google Scholar 

  12. Mueller JT, Urban PM (1998) J Power Sources 75(1):139–143

    Article  CAS  Google Scholar 

  13. Dong L, Dong H, Yu L, Zhang Q, Bai J, Sui J, Ma B (2011) ECS Trans 41(1):1317–1321

    Article  CAS  Google Scholar 

  14. Dong L, Sanganna Gari RR, Li Z, Craig MM, Hou S (2010) Carbon 48(3):781–787

    Article  CAS  Google Scholar 

  15. Dong H, Dong L (2011) J Inorg Organomet Polym Mater 21(4):754–757

    Article  CAS  Google Scholar 

  16. Zhang J, Datta R (2002) J Electrochem Soc 149(11):A1423–A1431

    Article  CAS  Google Scholar 

  17. Hampson NA, Willars MJ, McNicol BD (1979) J Power Sources 4(3):191–201

    Article  CAS  Google Scholar 

  18. McNicol BD (1981) J Electroanal Chem 118:71–87

    Article  CAS  Google Scholar 

  19. Capon A, Parsons R (1973) J Electroanal Chem 44(1):1–7

    Article  CAS  Google Scholar 

  20. Parsons R, VanderNoot T (1988) J Electroanal Chem 257(1):9–45

    CAS  Google Scholar 

  21. Bagotzky VS, Vassiliev YB, Khazova OA (1977) J Electroanal Chem 81(2):229–238

    Article  Google Scholar 

  22. Iwasita T, Xia XH, Liess HD, Vielstich W (1997) J Phys Chem B 101(38):7542–7547

    Article  CAS  Google Scholar 

  23. Jusys Z, Behm RJ (2001) J Phys Chem B 105(44):10874–10883

    Article  CAS  Google Scholar 

  24. Ghosh S, Raj CR (2010) J Phys Chem C 114(24):10843–10849

    Article  CAS  Google Scholar 

  25. Piela P, Fields R, Zelenay P (2006) J Electrochem Soc 153:A1902–A1913

    Article  CAS  Google Scholar 

  26. Roy SK, Orazem ME (2009) J Electrochem Soc 156(2):B203–B209

    Article  CAS  Google Scholar 

  27. Hirschorn B, Orazem ME, Tribollet B, Vivier V, Frateur I, Musiani M (2010) J Electrochem Soc 157(12):C452–C457

    Article  CAS  Google Scholar 

  28. Orazem ME, Pébère N, Tribollet B (2006) J Electrochem Soc 153(4):B129–B129

    Article  CAS  Google Scholar 

  29. Hirschorn B, Orazem ME, Tribollet B, Vivier V, Frateur I, Musiani M (2010) J Electrochem Soc 157(12):C458–C463

    Article  CAS  Google Scholar 

  30. Schneider IA, Bayer MH, Wokaun A, Scherer GG (2009) ECS Trans 25(1):937–948

    Article  CAS  Google Scholar 

  31. Brett DJL, Atkins S, Brandon NP, Vesovic V, Vasileiadis N, Kucernak A (2003) Electrochem Solid-State Lett 6(4):A63–A66

    Article  CAS  Google Scholar 

  32. Schneider IA, Freunberger SA, Kramer D, Wokaun A, Scherer GG (2007) J Electrochem Soc 154(4):B383–B388

    Article  CAS  Google Scholar 

  33. Schneider IA, Kramer D, Wokaun A, Scherer GG (2007) J Electrochem Soc 154(8):B770–B782

    Article  CAS  Google Scholar 

  34. Chen W, Kim J, Sun S, Chen S (2006) Phys Chem Chem Phys 8(23):2779–2786

    Article  CAS  Google Scholar 

  35. Melnick RE, Palmore GTR (2001) J Phys Chem B 105(39):9449–9457

    Article  CAS  Google Scholar 

  36. Martins AL, Batista BC, Sitta E, Varela H (2008) J Braz Chem Soc 19:679–687

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Faculty Research Grant and a Sabbatical Leave Award from Missouri State University, the National Natural Science Foundation of China (51172113), the Shandong Natural Science Foundation for Distinguished Young Scholars (JQ201118), the Qingdao Municipal Science and Technology Commission (12-1-4-136-hz), and the Taishan Overseas Scholar program from the Shandong Province Government, People’s Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifeng Dong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, B., Bai, J. & Dong, L. Electrochemical impedance analysis of methanol oxidation on carbon nanotube-supported Pt and Pt-Ru nanoparticles. J Solid State Electrochem 17, 2783–2788 (2013). https://doi.org/10.1007/s10008-013-2177-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2177-1

Keywords

Navigation