Skip to main content
Log in

Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review

I. Performance-determining factors

  • Review
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This work is focused on the comparative analysis of electrochemical and transport properties in the major families of cathode and anode compositions for intermediate-temperature solid oxide fuel cells (SOFCs) and materials science-related factors affecting electrode performance. The first part presents a brief overview of the electrochemical and chemical reactions in SOFCs, specific rate-determining steps of the electrode processes, solid oxide electrolyte ceramics, and effects of partial oxygen ionic and electronic conductivities in the SOFC components. The aspects associated with materials compatibility, thermal expansion, stability, and electrocatalytic behavior are also briefly discussed. Primary attention is centered on the experimental data and approaches reported during the last 10–15 years, reflecting the main challenges in the field of materials development for the ceramic fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Fuel Cell Handbook (2002) EG&G technical services, 6th edn. Science Applications International Corporation, Morgantown, West Virginia

    Google Scholar 

  2. Minh NQ, Takahashi T (1995) Science and technology of ceramic fuel cells. Elsevier, Amsterdam

    Google Scholar 

  3. Yamamoto O (2000) Electrochim Acta 45:2423

    CAS  Google Scholar 

  4. Singhal SC (2000) Mater Res Soc Bull 25:16

    CAS  Google Scholar 

  5. Park S, Vohs JM, Gorte RJ (2000) Nature 404:265

    CAS  Google Scholar 

  6. Steele BCH (2001) J Mater Sci 36:1053

    CAS  Google Scholar 

  7. Singhal SC (2002) Solid State Ionics 152–153:405

    Google Scholar 

  8. Eguchi K, Kojo H, Takeguchi T, Kikuchi R, Sasaki K (2002) Solid State Ionics 152–153:411

    Google Scholar 

  9. Alcaide F, Cabot P-L, Brillas E (2006) J Power Sources 153:47

    CAS  Google Scholar 

  10. Belmonte M (2006) Adv Eng Mater 8:693

    CAS  Google Scholar 

  11. von Helmolt R, Eberle U (2007) J Power Sources 165:833

    Google Scholar 

  12. Yano M, Tomita A, Sano M, Hibino T (2007) Solid State Ionics 177:3351

    CAS  Google Scholar 

  13. Baur H, Preis H (1937) Z Elektrochem 6:41

    Google Scholar 

  14. Weissbart J, Ruka R (1962) J Electrochem Soc 109:723

    CAS  Google Scholar 

  15. Möbius H-H (1997) J Solid State Electrochem 1:2

    Google Scholar 

  16. Kharton VV, Naumovich EN, Vecher AA (1999) J Solid State Electrochem 3:61

    CAS  Google Scholar 

  17. Tedmon CS, Spacil HS, Mitoff SP (1969) J Electrochem. Soc. 116:1170

    Google Scholar 

  18. Kharton VV, Yaremchenko AA, Naumovich EN (1999) J Solid State Electrochem 3:303

    CAS  Google Scholar 

  19. Kinoshita K (1992) Electrochemical oxygen technology. Wiley-Interscience, New York

    Google Scholar 

  20. Ihringer R, Van herle J, McEvoy AJ (1997) Development of thin film electrolytes co-fired with NiO-YSZ substrates. In: Stimming U, Singhal SC, Tagawa H, Lehnert W (eds) SOFC V. The Electrochemical Society, Pennington, NJ, pp 340–347

    Google Scholar 

  21. Kim J-W, Virkar AV, Fung K-Z, Mehta K, Singhal SC (1999) J Electrochem Soc 146:69

    CAS  Google Scholar 

  22. Doshi R, Richard VL, Carter JD, Wang X, Krumpelt M (1999) J Electrochem Soc 146:1273

    CAS  Google Scholar 

  23. Van herle J, Ihringer R, Sammes NM, Tompsett G, Kendall K, Yamada K, Wen C, Kawada T, Ihara M, Mizusaki J (2000) Solid State Ionics 132:333

    Google Scholar 

  24. Tsai T, Barnett SA (1997) Solid State Ionics 98:191

    CAS  Google Scholar 

  25. Ishihara T, Honda M, Nishiguchi H, Takita Y (1997) Solid oxide fuel cell operable at decreased temperature using LaGaO3 perovskite oxide electrolyte. In: Stimming U, Singhal SC, Tagawa H, Lehnert W (eds) SOFC V. The Electrochemical Society, Pennington, NJ, pp 301–310

    Google Scholar 

  26. Yasuda I, Matsuzaki Y, Yamakawa T, Koyama T (2000) Solid State Ionics 135:381

    CAS  Google Scholar 

  27. Yu HC, Zhao F, Virkar AV, Fung K-Z (2005) J Power Sources 152:22

    CAS  Google Scholar 

  28. Madsen BD, Barnett SA (2005) Solid State Ionics 176:2545

    CAS  Google Scholar 

  29. An S, Lu C, Worrell WL, Gorte RJ, Vohs JM (2004) Solid State Ionics 175:135

    CAS  Google Scholar 

  30. Huang K, Goodenough JB (2000) J Alloys Compd 303–304:454

    Google Scholar 

  31. Bi Z, Cheng M, Dong Y, Wu H, She Y, Yi B (2005) Solid State Ionics 176:655

    CAS  Google Scholar 

  32. Fukui T, Ohara S, Murata K, Yoshida H, Miura K, Inagaki T (2002) J Power Sources 106:142

    CAS  Google Scholar 

  33. Steele BCH (2000) Solid State Ionics 129:95

    CAS  Google Scholar 

  34. McEvoy AJ, Rambert S, Widmer S (1996) Nanostructure, defect chemistry and operating protocols influence SOFC performance. In: Thorstensen B (ed) Proceedings of the 2nd European Solid Oxide Fuel Cell Forum (Oslo, May 1996), vol 1. European SOFC Forum, Oberrohrdorf, Switzerland, pp 599–606

  35. Jiang SP (2002) Solid State Ionics 146:1

    CAS  Google Scholar 

  36. Huijsmans JPP (2001) Curr Opin Solid State Mat Sci 5:317

    CAS  Google Scholar 

  37. Ishihara T, Shibayama T, Nishiguchi H, Takita Y (2000) Solid State Ionics 132:209

    CAS  Google Scholar 

  38. Watanabe M, Uchida H, Yoshida M (1997) J Electrochem Soc 144:1739

    CAS  Google Scholar 

  39. Etsell TH, Flengas SN (1970) Chem Rev 70:339

    CAS  Google Scholar 

  40. Bouwmeester HJN, Burgraaf AJ (1996) Dense ceramic membranes for oxygen separation. In: Burggraaf AJ, Cot L (eds) Fundamentals of inorganic membrane science and technology. Elsevier, Amsterdam, pp 435–528

    Google Scholar 

  41. Perfilyev MV, Demin AK, Kuzin BL, Lipilin AS (1988) High-temperature electrolysis of gases. Nauka, Moscow

    Google Scholar 

  42. Adler SB (2004) Chem Rev 104:4791

    CAS  Google Scholar 

  43. Jiang SP (2007) J Solid State Electrochem 11:93

    Google Scholar 

  44. Fergus JW (2006) Solid State Ionics 177:1529

    CAS  Google Scholar 

  45. Jiang SP (2006) Mater Sci Eng A 418:199

    Google Scholar 

  46. Goodenough JB (2003) Annu Rev Mater Res 33:91

    CAS  Google Scholar 

  47. Kharton VV, Marques FMB, Atkinson A (2004) Solid State Ionics 174:135

    CAS  Google Scholar 

  48. Fergus JW (2006) J Power Sources 162:30

    CAS  Google Scholar 

  49. Dalslet B, Blennow P, Hendriksen PV, Bonanos N, Lybye D, Mogensen M (2006) J Solid State Electrochem 10:547

    CAS  Google Scholar 

  50. Petrov AN, Cherepanov VA, Zuev AYu (2006) J Solid State Electrochem 10:517

    CAS  Google Scholar 

  51. Liu Y, Tan X, Li K (2006) Catal Rev 48:145

    CAS  Google Scholar 

  52. Amow G, Skinner SJ (2006) J Solid State Electrochem 10:538

    CAS  Google Scholar 

  53. Ishihara T, Matsuda H, Takita Y (1994) J Am Chem Soc 116:3801

    CAS  Google Scholar 

  54. Feng M, Goodenough JB (1994) Eur J Solid State Inorg Chem 31:663

    CAS  Google Scholar 

  55. Abraham F, Boivin JC, Mairesse G, Nowogrocki G (1990) Solid State Ionics 40–41:934

    Google Scholar 

  56. Lacorre P, Goutenoire F, Bohnke O, Retoux R, Laligant Y (2000) Nature 404:856

    CAS  Google Scholar 

  57. Kramer SA, Tuller HL (1995) Solid State Ionics 82:15

    CAS  Google Scholar 

  58. Nakayama S, Kageyama T, Aono H, Sadaoka Y (1995) J Mater Chem 5:1801

    CAS  Google Scholar 

  59. Abram EJ, Sinclair DC, West AR (2001) J Mater Chem 11:1978

    CAS  Google Scholar 

  60. Tolchard JR, Islam MS, Slater PR (2003) J Mater Chem 13:1956

    CAS  Google Scholar 

  61. Shaula AL, Kharton VV, Marques FMB (2005) J Solid State Chem 178:2050

    CAS  Google Scholar 

  62. Kharton VV, Yaremchenko AA, Naumovich EN, Marques FMB (2000) J Solid State Electrochem 4:243

    CAS  Google Scholar 

  63. Kharton VV, Naumovich EN, Yaremchenko AA, Marques FMB (2001) J Solid State Electrochem 5:160

    CAS  Google Scholar 

  64. Marozau IP, Marrero-López D, Shaula AL, Kharton VV, Tsipis EV, Núñez P, Frade JR (2004) Electrochim Acta 49:3517

    CAS  Google Scholar 

  65. Goodenough JB (1997) Solid State Ionics 94:17

    CAS  Google Scholar 

  66. Badwal SPS (1992) Solid State Ionics 52:23

    CAS  Google Scholar 

  67. Yamamoto O, Arati Y, Takeda Y, Imanishi N, Mizutani Y, Kawai M, Nakamura Y (1995) Solid State Ionics 79:137

    CAS  Google Scholar 

  68. Badwal SPS, Ciacchi FT, Milosevic D (2000) Solid State Ionics 136–137:91

    Google Scholar 

  69. Mori M, Abe T, Itoh H, Yamomoto O, Takeda Y, Kawahara T (1994) Solid State Ionics 74:157

    CAS  Google Scholar 

  70. Lee J-H, Yoshimura M (1999) Solid State Ionics 124:185

    CAS  Google Scholar 

  71. Yahiro H, Eguchi K, Arai H (1989) Solid State Ionics 36:71

    CAS  Google Scholar 

  72. Kharton VV, Figueiredo FM, Navarro L, Naumovich EN, Kovalevsky AV, Yaremchenko AA, Viskup AP, Carneiro A, Marques FMB, Frade JR (2001) J Mater Sci 36:1105

    CAS  Google Scholar 

  73. Stevenson JW, Armstrong TR, Pederson LR, Li J, Levinsohn CA, Baskaran S (1998) Solid State Ionics 113–115:571

    Google Scholar 

  74. Stevenson JW, Hasinska K, Canfield NL, Armstrong TR (2000) J Electrochem Soc 147:3213

    CAS  Google Scholar 

  75. Nomura K, Tanase S (1997) Solid State Ionics 98:229

    CAS  Google Scholar 

  76. Arikawa H, Nishiguchi H, Ishihara T, Takita Y (2000) Solid State Ionics 136–137:31

    Google Scholar 

  77. Inaba H, Tagawa H (1996) Solid State Ionics 83:1

    CAS  Google Scholar 

  78. Hayashi H, Inaba H, Matsuyama M, Lan NG, Dokiya M, Tagawa H (1999) Solid State Ionics 122:1

    CAS  Google Scholar 

  79. Stevenson JW, Armstrong TR, McGready DE, Pederson LR, Weber WJ (1997) J Electrochem Soc 144:3613

    CAS  Google Scholar 

  80. Ishihara T, Shibayama T, Honda M, Nishiguchi H, Takita Y (2000) J Electrochem Soc 147:1332

    CAS  Google Scholar 

  81. Trofimenko N, Ullmann H (1999) Solid State Ionics 118:215

    CAS  Google Scholar 

  82. Kharton VV, Viskup AP, Yaremchenko AA, Baker RT, Gharbage B, Mather GC, Figueiredo FM, Naumovich EN, Marques FMB (2000) Solid State Ionics 132:119

    CAS  Google Scholar 

  83. Nguen TL, Dokiya M (2000) Solid State Ionics 132:217

    Google Scholar 

  84. Tsipis EV, Kharton VV, Frade JR (2007) Electrochim Acta 52:4428

    CAS  Google Scholar 

  85. Luebke S, Wiemhoefer H-D (1999) Solid State Ionics 117:229

    Google Scholar 

  86. Kim J-H, Yoo H-I (2001) Solid State Ionics 140:105

    CAS  Google Scholar 

  87. Kharton VV, Tsipis EV, Yaremchenko AA, Vyshatko NP, Shaula AL, Naumovich EN, Frade JR (2003) J Solid State Electrochem 7:468

    CAS  Google Scholar 

  88. Kharton VV, Shaula AL, Vyshatko NP, Marques FMB (2003) Electrochim Acta 48:1817

    CAS  Google Scholar 

  89. Shaula AL, Kharton VV, Marques FMB (2006) Solid State Ionics 177:1725

    CAS  Google Scholar 

  90. Tietz F (1999) Ionics 5:129

    CAS  Google Scholar 

  91. Hayashi H, Kanoh M, Quan C, Inaba H, Wang S, Dokiya M, Tagawa H (2000) Solid State Ionics 132:227

    CAS  Google Scholar 

  92. Mori M, Tompsett GM, Sammes NM, Suda E, Takeda Y (2003) Solid State Ionics 158:79

    CAS  Google Scholar 

  93. Sakaki Y, Takeda Y, Kato A, Imanishi N, Yamamoto O, Hattori M, Ito M, Esaki Y (1999) Solid State Ionics 118:187

    CAS  Google Scholar 

  94. Tikhonova LA, Samal GI, Zhuk PP, Tonoyan AA, Vecher AA (1990) Inorg Mater 26:149

    Google Scholar 

  95. Al Daroukh M, Vashook VV, Ullmann H, Tietz F, Arual Raj I (2003) Solid State Ionics 158:141

    CAS  Google Scholar 

  96. Aruna ST, Muthuraman M, Patil KC (1999) Solid State Ionics 120:275

    CAS  Google Scholar 

  97. Tai L-W, Nasrallah MM, Anderson HU, Sparlin DM, Sehlin SR (1995) Solid State Ionics 76:259

    CAS  Google Scholar 

  98. Tai L-W, Nasrallah MM, Anderson HU, Sparlin DM, Sehlin SR (1995) Solid State Ionics 76:273

    CAS  Google Scholar 

  99. Petric A, Huang P, Tietz F (2000) Solid State Ionics 135:719

    CAS  Google Scholar 

  100. Riza F, Ftikos Ch, Tietz F, Fischer W (2001) J Eur Ceram Soc 21:1769

    CAS  Google Scholar 

  101. Kostogloudis GC, Ftikos Ch, Ahmad-Khanlou A, Naoumidis A, Stöver D (2000) Solid State Ionics 134:127

    CAS  Google Scholar 

  102. Boehm E, Bassat J-M, Steil MC, Dordor P, Mauvy F, Grenier J-C (2003) Solid State Sci 5:973

    CAS  Google Scholar 

  103. Skinner SJ, Kilner JA (2000) Solid State Ionics 135:709

    CAS  Google Scholar 

  104. Yamamoto O, Takeda Y, Kanno R, Kojima T (1989) Stability of perovskite oxide electrode with stabilized zirconia. In: Singhal SC (ed) SOFC I. The Electrochemical Society, Pennington, NJ, pp 242–253

    Google Scholar 

  105. Kharton VV, Tsipis EV, Yaremchenko AA, Frade JR (2004) Solid State Ionics 166:327

    CAS  Google Scholar 

  106. Drennan J, Auchterlonie G (2000) Solid State Ionics 134:75

    CAS  Google Scholar 

  107. Yuzaki A, Kishimoto A (1999) Solid State Ionics 116:47

    CAS  Google Scholar 

  108. Murygin IV (1991) Electrode processes in solid electrolytes. Nauka, Moscow

    Google Scholar 

  109. Fabry P, Kleitz M (1974) J Electroanal Chem 57:165

    CAS  Google Scholar 

  110. Perfilyev MV (1978) Tr Inst Elektrokhim Ural Akad Nauk SSSR 26:81

    Google Scholar 

  111. Wang DY, Nowick AS (1981) J Electrochem Soc 128:55

    CAS  Google Scholar 

  112. Mitterdorfer A, Gauckler LJ (1999) Solid State Ionics 117:187

    CAS  Google Scholar 

  113. Mitterdorfer A, Gauckler LJ (1999) Solid State Ionics 117:203

    CAS  Google Scholar 

  114. Mizusaki J, Tagawa H, Isobe K, Tajika M, Koshiro I, Maruyama H, Hirano K (1994) J Electrochem Soc 141:1674

    CAS  Google Scholar 

  115. Horita T, Yamaji K, Sakai N, Xiong Y, Yokokawa H, Kawada T (2002) Ionics 8:108

    CAS  Google Scholar 

  116. Jiménez R, Kloidt T, Kleitz M (1997) J Electrochem Soc 144:582

    Google Scholar 

  117. Yoon SP, Nam SW, Kim S-G, Hong S-A, Hyun S-H (2003) J Power Sources 115:27

    CAS  Google Scholar 

  118. Kenjo T, Kanehira Y (2002) Solid State Ionics 148:1

    CAS  Google Scholar 

  119. Steele BCH (1997) Solid State Ionics 94:239

    CAS  Google Scholar 

  120. Simner SP, Anderson MD, Pederson LR, Stevenson JW (2005) J Electrochem Soc 152:A1851

    CAS  Google Scholar 

  121. Adler SB, Lane JA, Steele BCH (1996) J Electrochem Soc 143:3554

    CAS  Google Scholar 

  122. Liu M (1998) J Electrochem Soc 145:142

    CAS  Google Scholar 

  123. Chan SH, Khor KA, Xia ZT (2001) J Power Sources 93:130

    CAS  Google Scholar 

  124. Ni M, Leung MKH, Leung DYC (2007) J Power Sources 168:369

    CAS  Google Scholar 

  125. Sasaki K, Wurth J-P, Gschwend R, Gödickemeier M, Gauckler LJ (1996) J Electrochem Soc 143:530

    CAS  Google Scholar 

  126. Svensson AM, Nişancioğlu K (1998) J Electrochem Soc 145:3130

    CAS  Google Scholar 

  127. Kharton VV, Tsipis EV, Marozau IP, Viskup AP, Frade JR, Irvine JTS (2007) Solid State Ionics 178:101

    CAS  Google Scholar 

  128. Mizusaki J, Saito T, Tagawa H (1996) J Electrochem Soc 143:3065

    CAS  Google Scholar 

  129. Luerssen B, Janek J, Imbihl R (2001) Solid State Ionics 141:701

    Google Scholar 

  130. Janek J, Rohnke M, Luerssen B, Imbihl R (2000) Phys Chem Chem Phys 2:1935

    CAS  Google Scholar 

  131. Chebotin VN, Perfiliev MV (1978) Electrochemistry of solid electrolytes. Technical Information Center, US Department of Energy, Oak Ridge

    Google Scholar 

  132. Marczewski AW, Derylo-Marczewska A, Jaroniec M (1988) Chem Scripta 28:173

    CAS  Google Scholar 

  133. Endo A, Fukunaga H, Wen C, Yamada K (2000) Solid State Ionics 135:353

    CAS  Google Scholar 

  134. Atangulov RU, Murygin IV (1993) Solid State Ionics 67:9

    CAS  Google Scholar 

  135. Chang C-L, Lee T-C, Huang T-J (1998) J Solid State Electrochem 2:291

    CAS  Google Scholar 

  136. Gödickemeier M, Sakai K, Gauckler LJ, Riess I (1997) J Electrochem Soc 144:1635

    Google Scholar 

  137. Svensson AM, Sunde S, Nişancioğlu K (1997) J Electrochem Soc 144:2719

    CAS  Google Scholar 

  138. Svensson AM, Sunde S, Nişancioğlu K (1998) J Electrochem Soc 145:1390

    CAS  Google Scholar 

  139. Mizusaki J, Amato K, Yamauchi S, Fueki K (1987) Solid State Ionics 22:313

    CAS  Google Scholar 

  140. Fleig J (2002) J Power Sources 105:228

    CAS  Google Scholar 

  141. Fleig J, Maier J (2004) J Eur Ceram Soc 24:1343

    CAS  Google Scholar 

  142. Siebert E, Hammouche A, Kleitz M (1995) Electrochim Acta 40:1741

    CAS  Google Scholar 

  143. Coffey GW, Pederson LR, Rieke PC (2003) J Electrochem Soc 150:A1139

    CAS  Google Scholar 

  144. Kuznecov M, Otschik P, Obenaus P, Eichler K, Schaffrath W (2003) Solid State Ionics 157:371

    CAS  Google Scholar 

  145. van Heuveln FH, Bouwmeester HJM (1997) J Electrochem Soc 144:134

    Google Scholar 

  146. Jiang SP, Love JG, Ramprakash Y (2002) J Power Sources 110:201

    CAS  Google Scholar 

  147. Chen XJ, Khor KA, Chan SH (2003) J Power Sources 123:17

    CAS  Google Scholar 

  148. Kamata H, Hosaka A, Mizusaki J, Tagawa H (1998) Solid State Ionics 106:237

    CAS  Google Scholar 

  149. Murray E, Tsai T, Barnett S (2002) Solid State Ionics 110:235

    Google Scholar 

  150. Takeda Y, Kanno R, Noda M, Tomida Y, Yamamoto O (1987) J Electrochem Soc 134:2656

    CAS  Google Scholar 

  151. Tsuneyoshi K, Mori K, Sawata A, Mizusaki J, Tagawa H (1989) Solid State Ionics 35:263

    CAS  Google Scholar 

  152. Mizusaki J, Tagawa H, Katou M, Hirano K, Sawata A, Tsuneyoshi K (1991) Electrochemical properties of some perovskite-type oxides as oxygen gas electrodes on yttria stabilized zirconia. In: Grosz F, Zegers P, Singhal SC, Yamamoto O (eds) SOFC II. The Electrochemical Society, Pennington, NJ, pp 487–494

    Google Scholar 

  153. Fukunaga H, Koyama M, Takahashi N, Wen C, Yamada K (2000) Solid State Ionics 132:279

    CAS  Google Scholar 

  154. Adler SB (1998) Solid State Ionics 111:125

    CAS  Google Scholar 

  155. Adler SB (2000) Solid State Ionics 135:603

    CAS  Google Scholar 

  156. Jamnik J, Maier J (2001) Phys Chem Chem Phys 3:1668

    CAS  Google Scholar 

  157. Baker R, Guindet J, Kleitz M (1997) J Electrochem Soc 144:2427

    CAS  Google Scholar 

  158. Mogensen M, Skaarup S (1996) Solid State Ionics 86–88:1151

    Google Scholar 

  159. Brown M, Primdahl S, Mogensen M (2000) J Electrochem Soc 147:475

    CAS  Google Scholar 

  160. de Boer B, Gonzalez M, Bouwmeester HJM, Verweij H (2000) Solid State Ionics 127:269

    Google Scholar 

  161. Mohamedi-Boulenouar FZ, Guindet J, Hammou A (1997) Influence of water vapor on electrochemical oxidation of hydrogen at the Ni/zirconia interface. In: Stimming U, Singhal SC, Tagawa H, Lehnert W (eds) SOFC V. The Electrochemical Society, Pennington, NJ, pp 441–450

    Google Scholar 

  162. Mizusaki J, Tagawa H, Saito T, Kamitani K, Yamamura T, Hirano K, Ehara S, Takagi T, Hikita T, Ippommatsu M, Nakagawa S, Hashimoto K (1994) J Electrochem Soc 141:2129

    CAS  Google Scholar 

  163. Bieberle A, Meier LP, Gauckler LJ (2001) J Electrochem Soc 148:A646

    CAS  Google Scholar 

  164. Primdahl S, Mogensen M (1997) J Electrochem Soc 144:3409

    CAS  Google Scholar 

  165. Ihara M, Kusano T, Yokoyama C (2001) J Electrochem Soc 148:A209

    CAS  Google Scholar 

  166. Jiang SP, Ramprakash Y (1999) Solid State Ionics 122:211

    CAS  Google Scholar 

  167. Jiang SP, Ramprakash Y (1999) Solid State Ionics 116:145

    CAS  Google Scholar 

  168. Iwata T (1996) J Electrochem Soc 143:1521

    CAS  Google Scholar 

  169. Jung GB, Lo KF, Chan SH (2007) J Solid State Electrochem 11:1435

    CAS  Google Scholar 

  170. Williford RE, Chick LA, Maupin GD, Simner SP, Stevenson JW (2003) J Electrochem Soc 150:A1067

    CAS  Google Scholar 

  171. Mogensen M, Kammer K (2003) Annu Rev Mater Res 33:321

    CAS  Google Scholar 

  172. Yentekakis IV, Jiang Y, Neophytides S, Bebelis S, Vayenas CG (1995) Ionics 1:491

    CAS  Google Scholar 

  173. Murray EP, Tsai T, Barnett SA (1999) Nature 400:649

    CAS  Google Scholar 

  174. Liu J, Barnett SA (2003) Solid State Ionics 158:11

    CAS  Google Scholar 

  175. Vernoux P, Guindet J, Gehain E, Kleitz M (1997) Catalysts for continuous methane reforming in medium temperature SOFC. In: Stimming U, Singhal SC, Tagawa H, Lehnert W (eds) SOFC V. The Electrochemical Society, Pennington, NJ, pp 219–227

    Google Scholar 

  176. Sato K, Nakamura J, Uchijima T, Hayakawa T, Hamakawa S, Tsunoda T, Shishido T, Takehira K (2000) Solid State Ionics 136–137:753

    Google Scholar 

  177. Diskin AM, Cunningham RH, Ormerod RM (1998) Catal Today 46:147

    CAS  Google Scholar 

  178. Finnerty CM, Coe NJ, Cunningham RH, Ormerod RM (1998) Catal Today 46:137

    CAS  Google Scholar 

  179. Chan SH, Xia ZT (2001) J Electrochem Soc 148:A388

    CAS  Google Scholar 

  180. Arnošt D, Schneider P (1995) Chem Eng J 57:91

    Google Scholar 

  181. Drescher I, Lehnert W, Meusinger J (1998) Electrochim Acta 43:3059

    CAS  Google Scholar 

  182. Eguchi K, Kunisa Y, Adachi K, Arai H (1996) J Electrochem Soc 143:3699

    CAS  Google Scholar 

  183. Wen C, Kato R, Fukunaga H, Ishitani H, Yamada K (2000) J Electrochem Soc 147:2076

    CAS  Google Scholar 

  184. Bieberle A, Gaukler LJ (2002) Solid State Ionics 146:23

    CAS  Google Scholar 

  185. Jiang SP, Badwal SPS (1999) Solid State Ionics 123:209

    CAS  Google Scholar 

  186. Holtappels P, de Haart LGJ, Stimming U (1999) J Electrochem Soc 146:1620

    CAS  Google Scholar 

  187. Charpentier P, Fragnaud P, Schleich DM, Gehain E (2000) Solid State Ionics 135:373

    CAS  Google Scholar 

  188. Mizusaki J, Tagawa H, Miyaki Y, Yamauchi S, Fueki K, Koshiro I, Hirano K (1992) Solid State Ionics 53–56:126

    Google Scholar 

  189. Deutschmann O, Behrendt F, Warnatz J (1998) Catal Today 46:155

    CAS  Google Scholar 

  190. Peña MA, Gómez JP, Fierro JLG (1996) Appl Catal A 144:7

    Google Scholar 

  191. York APE, Xiao T, Green MLH (2003) Top Catal 22:345

    CAS  Google Scholar 

  192. Kharton VV, Naumovich EN, Samokhval VV (1997) Solid State Ionics 99:269

    CAS  Google Scholar 

  193. Lee HY, Cho WS, Oh SM, Wiemhöfer H-D, Göpel W (1995) J Electrochem Soc 142:2659

    CAS  Google Scholar 

  194. Bouwmeester HJM, Kruidhof H, Burggraaf AJ (1994) Solid State Ionics 72:185

    CAS  Google Scholar 

  195. Steele BCH (1995) Solid State Ionics 75:157

    CAS  Google Scholar 

  196. Kharton VV, Shaula AL, Naumovich EN, Vyshatko NP, Marozau IP, Viskup AP, Marques FMB (2003) J Electrochem Soc 150:J33

    CAS  Google Scholar 

  197. Shaula AL, Kharton VV, Marques FMB, Kovalevsky AV, Viskup AP, Naumovich EN (2006) J Solid State Electrochem 10:28

    CAS  Google Scholar 

  198. Marozau IP, Kharton VV, Viskup AP, Frade JR, Samakhval VV (2006) J Eur Ceram Soc 26:1371

    CAS  Google Scholar 

  199. Tsipis EV, Kharton VV, Frade JR, Núñez P (2005) J Solid State Electrochem 9:547

    CAS  Google Scholar 

  200. Tikhonovich VN, Kharton VV, Naumovich EN, Savitsky AA (1998) Solid State Ionics 106:197

    CAS  Google Scholar 

  201. Yasuda I, Ogasawara K, Hishinuma M, Kawada T, Dokiya M (1996) Solid State Ionics 86–88:1197

    Google Scholar 

  202. Ullmann H, Trofimenko N, Tietz F, Stöver D, Ahmad-Khanlou A (2000) Solid State Ionics 138:79

    CAS  Google Scholar 

  203. Ishihara T, Fukui S, Nishiguchi H, Takita Y (2002) Solid State Ionics 152–153:609

    Google Scholar 

  204. Kharton VV, Naumovich EN, Vecher AA, Nikolaev AV (1995) J Solid State Chem 120:128

    CAS  Google Scholar 

  205. Teraoka Y (1991) Solid State Ionics 48:207

    CAS  Google Scholar 

  206. Lee HY, Oh SM, Seo I, Rocholl F, Wiemhöfer H-D (1997) The cathodic activity and interfacial stability of Y0.8Ca0.2Co1-xFexO3/YSZ electrodes. In: Stimming U, Singhal SC, Tagawa H, Lehnert W (eds) SOFC V. The Electrochemical Society, Pennington, NJ, pp 520–529

    Google Scholar 

  207. Ioroi T, Hara T, Uchimoto Y, Ogumi Z, Takehara ZI (1998) J Electrochem Soc 145:1999

    CAS  Google Scholar 

  208. Endo A, Wada S, Wen C, Komiyama H, Yamada K (1998) J Electrochem Soc 145:L35

    CAS  Google Scholar 

  209. Adler SB, Chen XY, Wilson JR (2007) J Catal 245:91

    CAS  Google Scholar 

  210. De Souza RA (2006) Phys Chem Chem Phys 8:890

    Google Scholar 

  211. Kharton VV, Marques FMB (2002) Curr Opin Solid State Mater Sci 6:261

    CAS  Google Scholar 

  212. Bronin DI, Kuzin BL, Yaroslavtsev IYu, Bogdanovich NM (2006) J Solid State Electrochem 10:651

    CAS  Google Scholar 

  213. Simwonis D, Tietz F, Stöver D (2000) Solid State Ionics 132:241

    CAS  Google Scholar 

  214. Jiang SP, Duan YY, Love JG (2002) J Electrochem Soc 149:A1175

    CAS  Google Scholar 

  215. Kharton VV, Naumovich EN, Tikhonovich VN, Bashmakov IA, Boginsky LS, Kovalevsky AV (1999) J Power Sources 79:242

    CAS  Google Scholar 

  216. Marina OA, Bagger C, Primdahl S, Mogensen M (1999) Solid State Ionics 123:199

    CAS  Google Scholar 

  217. Gorte RJ, Park S, Vohs JM, Wang C (2000) Adv Mater 12:1465

    CAS  Google Scholar 

  218. Wang S, Kato T, Nagata S, Honda T, Kaneko T, Iwashita N, Dokiya M (2002) J Electrochem Soc 149:A927

    CAS  Google Scholar 

  219. Tsipis EV, Kharton VV, Frade JR (2005) J Eur Ceram Soc 25:2623

    CAS  Google Scholar 

  220. Maric R, Ohara S, Fukui T, Inagaki T, Fujita J (1998) Electrochem Solid-State Lett 1:201

    CAS  Google Scholar 

  221. Tsipis EV, Kharton VV, Bashmakov IA, Naumovich EN, Frade JR (2004) J Solid State Electrochem 8:674

    CAS  Google Scholar 

  222. Primdahl S, Mogensen M (2002) Solid State Ionics 152:597

    Google Scholar 

  223. Fagg DP, Kharton VV, Frade JR (2004) J Solid State Electrochem 8:618

    CAS  Google Scholar 

  224. Uchida H, Yoshida M, Watanabe M (1999) J Electrochem Soc 146:1

    CAS  Google Scholar 

  225. Ishihara T, Shibayama T, Honda M, Nishiguchi H, Takita Y (2000) J Electrochem Soc 147:1332

    CAS  Google Scholar 

  226. Liu M, Wu Z (1998) Solid State Ionics 107:105

    CAS  Google Scholar 

  227. Mishima Y, Mitsuyasu H, Ohtaki M, Eguchi K (1998) J Electrochem Soc 145:1004

    CAS  Google Scholar 

  228. Tsai T, Perry E, Barnett S (1997) J Electrochem Soc 144:L130

    CAS  Google Scholar 

  229. Horita T, Yamaji K, Sakai N, Yokokawa H, Kawada T, Kato T (2000) Solid State Ionics 127:55

    CAS  Google Scholar 

  230. Schouler EJL (1983) Solid State Ionics 9–10:945

    Google Scholar 

  231. Kharton VV, Viskup AP, Figueiredo FM, Naumovich EN, Shaulo AL, Marques FMB (2002) Mater Lett 53:160

    CAS  Google Scholar 

  232. Amow G, Whitfield PS, Davidson IJ, Hammond RP, Munnings CN, Skinner SJ (2004) Ceram Int 30:1635

    CAS  Google Scholar 

  233. Qiu L, Ichikawa T, Hirano S, Imanishi N, Takeda Y (2003) Solid State Ionics 158:55

    CAS  Google Scholar 

  234. Bohac P, Orliukas A, Gauckler L (1994) Lowering of the cathode overpotential of SOFC by electrolyte doping. In: Waser R, Hoffmann S, Bonnenberg D, Hoffmann Ch (eds) Electroceramics IV, vol II. IWE, University of Technology, Augustinus Buchhandlung, Aachen, pp 771–780

    Google Scholar 

  235. Kharton VV, Yaremchenko AA, Viskup AP, Mather GC, Naumovich EN, Marques FMB (2001) J Electroceramics 7:57

    CAS  Google Scholar 

  236. Naumovich EN, Kharton VV, Yaremchenko AA, Patrakeev MV, Kellerman DG, Logvinovich DI, Kozhevnikov VL (2006) Phys Rev B 74:064105

    Google Scholar 

  237. Chen F, Liu M (1998) J Solid State Electrochem 3:7

    CAS  Google Scholar 

  238. Huang P, Horky A, Petric A (1999) J Am Ceram Soc 82:2402

    Article  CAS  Google Scholar 

  239. Yamaji K, Horita T, Sakai N, Yokokawa H (2002) Solid State Ionics 152–153:517

    Google Scholar 

  240. Tsipis EV, Kharton VV, Frade JR (2006) Solid State Ionics 177:1823

    CAS  Google Scholar 

  241. Grasset F, Dussarrat C, Darriet J (1997) J Mater Chem 7:1911

    CAS  Google Scholar 

  242. de Ridder M, Vervoort AGJ, van Welzenis RG, Brongersma HH (2003) Solid State Ionics 156:255

    Google Scholar 

  243. Kleitz M, Petitbon F (1996) Solid State Ionics 92:65

    CAS  Google Scholar 

  244. Jiang SP, Love JG, Apateanu L (2003) Solid State Ionics 160:15

    CAS  Google Scholar 

  245. Bronin DI, Kuzin BL, Näfe H, Aldinger F (1998) Ionics 4:249

    CAS  Google Scholar 

  246. Matsuzaki Y, Yasuda I (2001) J Electrochem Soc 148:A126

    CAS  Google Scholar 

  247. Jiang SP, Zhang JP, Föger K (2000) J Electrochem Soc 147:3195

    CAS  Google Scholar 

  248. Larring Y, Haugsrud R, Norby T (2003) J Electrochem Soc 150:B374

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladislav V. Kharton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsipis, E.V., Kharton, V.V. Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review. J Solid State Electrochem 12, 1039–1060 (2008). https://doi.org/10.1007/s10008-007-0468-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-007-0468-0

Keywords

Navigation