Skip to main content
Log in

Chemosensitive properties of poly-4,4′-dialkoxy-2,2′-bipyrroles

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Chemosensitive properties of 4,4′-dimethoxy-2,2′-bipyrrole and 4,4′-dibuthoxy-2,2′-bipyrrole were investigated. These new conductive polymers were polymerized by cyclic voltammetry on the platinum and gold interdigitated electrodes designed for 2- and 4-point measurement of lateral conductivity. Thus, obtained polymers demonstrated high sensitivity to HCl in the parts per million concentration range. Kinetics of the gaseous HCl influence on the ratios of conductivities measured by 2- and 4-point techniques was analyzed. Some response of the polymers conductance towards NH3, NO and oxygen was also observed, but with much lower sensitivity than towards HCl. In aqueous solutions, the polymer conductivity was pH dependent; in comparison with 4,4′-dibuthoxy-2,2′-bipyrrole, the conductivity range of the methoxy derivative was shifted to acidic range for about two pH units. A possibility to use the pH dependence for the development of enzymatic biosensors with pH transducing was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Nicolas-Debarnot D, Poncin-Epaillard F (2003) Polyaniline as a new sensitive layer for gas sensors. Anal Chim Acta 475:1–15

    Article  CAS  Google Scholar 

  2. Leopold S, Herranen M, Carlsson JO, Nyholm L (2003) In situ pH measurement of the self-oscillating Cu(II)-lactate system using an electropolymerized polyaniline film as a micro pH sensor. J Electroanal Chem 547:45–52

    Article  CAS  Google Scholar 

  3. Pringsheim E, Zimin D, Wolfbeis OS (2001) Fluorescent beads coated with polyaniline. A novel nanomaterial for optical sensing of pH. Adv Mater (Weinheim, Germany) 13:819–822

    Article  CAS  Google Scholar 

  4. Talaie A, Lee JY, Lee YK, Jang J, Romagnoli JA, Taguchi T, Maeder E (2000) Dynamic sensing using intelligent composite: an investigation to development of new pH sensors and electrochromic devices. Thin Solid Films 363:163–166

    Article  CAS  Google Scholar 

  5. Talaie A (1997) Conducting polymer based pH detector: a new outlook to pH sensing technology. Polymer 38:1145–1150

    Article  CAS  Google Scholar 

  6. Ge Z, Brown CW, Sun L, Yang SC (1993) Fiber-optic pH sensor based on evanescent wave absorption spectroscopy. Anal Chem 65:2335–2338

    Article  CAS  Google Scholar 

  7. Kukla AL, Shirshov Y, Piletsky SA (1996) Ammonia sensors based on sensitive polyaniline films. Sens Actuators B Chem B 37:135–140

    Article  Google Scholar 

  8. Chabukswar VV, Pethkar S, Athawale AA (2001) Acrylic acid doped polyaniline as an ammonia sensor. Sens Actuators B Chem B 77:657–663

    Article  Google Scholar 

  9. Collins GE, Buckley LJ (1996) Conductive polymer-coated fabrics for chemical sensing. Synth Metals 78:93–101

    Article  CAS  Google Scholar 

  10. Matsuguchi M, Io J, Sugiyama G, Sakai Y (2002) Effect of NH3 gas on the electrical conductivity of polyaniline blend films. Synth Metals 128:15–19

    Article  CAS  Google Scholar 

  11. Athawale AA, Kulkarni MV (2000) Polyaniline and its substituted derivatives as sensor for aliphatic alcohols. Sens Actuators B Chem B67:173–177

    Article  Google Scholar 

  12. Meijerink MGH, Strike DJ, de Rooij NF, Koudelka-Hep M (2000) Reproducible fabrication of an array of gas-sensitive chemo-resistors with commercially available polyaniline. Sens Actuators B Chem B 68:331–334

    Article  Google Scholar 

  13. Barker PS, Chen JR, Agbor NE, Monkman AP, Mars P, Petty MC (1994) Vapor recognition using organic films and artificial neural networks. Sens Actuators B Chem 17:143–147

    Article  CAS  Google Scholar 

  14. Agbor NE, Petty MC, Monkman AP (1995) Polyaniline thin films for gas sensing. Sens Actuators B Chem B 28:173–179

    Article  Google Scholar 

  15. Xie D, Jiang Y, Pan W, Li D, Wu Z, Li Y (2002) Fabrication and characterization of polyaniline-based gas sensor by ultra-thin film technology. Sens Actuators B Chem B81:158–164

    Article  Google Scholar 

  16. Barker PS, Di Bartolomeo C, Monkman AP, Petty MC, Pride R (1995) Gas sensing using a charge-flow transistor. Sens Actuators B Chem B 25:451–453

    Article  Google Scholar 

  17. Takeda S (1999) A new type of CO2 sensor built up with plasma polymerized polyaniline thin film. Thin Solid Films 343–344:313–316

    Article  Google Scholar 

  18. Ogura K, Shiigi H (1999) A CO2 sensing composite film consisting of base-type polyaniline and poly(vinyl alcohol). Electrochem Solid-state Lett 2:478–480

    Article  CAS  Google Scholar 

  19. Ogura K, Shiigi H, Oho T, Tonosaki T (2000) A CO2 sensor with polymer composites operating at ordinary temperature. J Electrochem Soc 147:4351–4355

    Article  CAS  Google Scholar 

  20. Hosseini SH, Entezami AA (2001) Chemical and electrochemical synthesis of homopolymer and copolymers of 3-methoxyethoxythiophene with aniline, thiophene and pyrrole for studies of their gas and vapor sensing. Polym Adv Technol 12:524–534

    Article  CAS  Google Scholar 

  21. Sharma S, Nirkhe C, Pethkar S, Athawale AA (2002) Chloroform vapour sensor based on copper/polyaniline nanocomposite. Sens Actuators B Chem B 85:131–136

    Article  Google Scholar 

  22. Barker PS, Monkman AP, Petty MC, Pride R (1997) A polyaniline/silicon hybrid field effect transistor humidity sensor. Synth Metals 85:1365–1366

    Article  CAS  Google Scholar 

  23. Domansky K, Li J, Janata J (1997) Selective doping of chemically sensitive layers on a multisensing chip. J Electrochem Soc 144:L75–L78

    Article  CAS  Google Scholar 

  24. Domansky K, Baldwin DL, Grate JW, Hall TB, Li J, Josowicz M, Janata J (1998) Development and calibration of field-effect transistor-based sensor array for measurement of hydrogen and ammonia gas mixtures in humid air. Anal Chem 70:473–481

    Article  CAS  Google Scholar 

  25. Kaden H, Jahn H, Berthold M (2004) Study of the glass/polypyrrole interface in an all-solid-state pH sensor. Solid State Ion 169:129–133

    Article  CAS  Google Scholar 

  26. Michalska A, Maksymiuk K (2003) Counter-ion influence on polypyrrole potentiometric pH sensitivity. Microchimica Acta 143:163–175

    Article  CAS  Google Scholar 

  27. Jahn H, Berthold M, Kaden H (2001) Functional layers for chemical sensors based on conducting polypyrrole. Macromol Symp 164:181–186

    Article  CAS  Google Scholar 

  28. Michalska A, Hulanicki A, Lewenstam A (1994) All solid-state hydrogen ion-selective electrode based on a conducting poly(pyrrole) solid contact. Analyst (Cambridge, United Kingdom) 119:2417–2420

    CAS  Google Scholar 

  29. Hosseini SH, Entezami AA (2003) Chemical and electrochemical synthesis of conducting graft copolymer of vinyl acetate with pyrrole and studies of its gas and vapor sensing. J Appl Polym Sci 90:40–48

    Article  CAS  Google Scholar 

  30. Hosseini SH, Entezami AA (2003) Conducting polymer blends of polypyrrole with polyvinyl acetate, polystyrene, and polyvinyl chloride based toxic gas sensors. J Appl Polym Sci 90:49–62

    Article  CAS  Google Scholar 

  31. Merz A, Anikin S, Lieser B, Heinze J, John H (2003) 3,3′- and 4,4′-dimethoxy-2,2′-bipyrroles highly electron-rich model compounds for polypyrrole formation. Chemistry–A European Journal 9:449–455

    Article  CAS  Google Scholar 

  32. Hao Q, Kulikov V, Mirsky VM (2003) Investigation of contact and bulk resistance of conducting polymers by simultaneous 2- and 4-point technique. Sens Actuators B Chem B 94:352–357

    Article  CAS  Google Scholar 

  33. Inganaes O, Erlandsson R, Nylander C, Lundstroem I (1984) Proton modification of conducting polypyrrole. J Phys Chem Solids 45:427–432

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge H. Breznová for preliminary experiments, O.S. Wolfbeis, V. Král and R. Volf for their fruitful discussions. M.K. and G.B. acknowledge Socrates/Erasmus for financing their stay in the Regensburg University and the Ministry of Education of the Czech Republic for the grant MSM6046137307.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir M. Mirsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krondak, M., Broncová, G., Anikin, S. et al. Chemosensitive properties of poly-4,4′-dialkoxy-2,2′-bipyrroles. J Solid State Electrochem 10, 185–191 (2006). https://doi.org/10.1007/s10008-005-0069-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-005-0069-8

Keywords

Navigation